Clinical Utility of a CT-based AI Prognostic Model for Segmentectomy in Non–Small Cell Lung Cancer

医学 肺癌 放射科 癌症 计算机断层摄影术 内科学 肿瘤科
作者
Kwon Joong Na,Young Tae Kim,Jin Mo Goo,Hyungjin Kim
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:1
标识
DOI:10.1148/radiol.231793
摘要

Background Currently, no tool exists for risk stratification in patients undergoing segmentectomy for non–small cell lung cancer (NSCLC). Purpose To develop and validate a deep learning (DL) prognostic model using preoperative CT scans and clinical and radiologic information for risk stratification in patients with clinical stage IA NSCLC undergoing segmentectomy. Materials and Methods In this single-center retrospective study, transfer learning of a pretrained model was performed for survival prediction in patients with clinical stage IA NSCLC who underwent lobectomy from January 2008 to March 2017. The internal set was divided into training, validation, and testing sets based on the assignments from the pretraining set. The model was tested on an independent test set of patients with clinical stage IA NSCLC who underwent segmentectomy from January 2010 to December 2017. Its prognostic performance was analyzed using the time-dependent area under the receiver operating characteristic curve (AUC), sensitivity, and specificity for freedom from recurrence (FFR) at 2 and 4 years and lung cancer–specific survival and overall survival at 4 and 6 years. The model sensitivity and specificity were compared with those of the Japan Clinical Oncology Group (JCOG) eligibility criteria for sublobar resection. Results The pretraining set included 1756 patients. Transfer learning was performed in an internal set of 730 patients (median age, 63 years [IQR, 56–70 years]; 366 male), and the segmentectomy test set included 222 patients (median age, 65 years [IQR, 58–71 years]; 114 male). The model performance for 2-year FFR was as follows: AUC, 0.86 (95% CI: 0.76, 0.96); sensitivity, 87.4% (7.17 of 8.21 patients; 95% CI: 59.4, 100); and specificity, 66.7% (136 of 204 patients; 95% CI: 60.2, 72.8). The model showed higher sensitivity for FFR than the JCOG criteria (87.4% vs 37.6% [3.08 of 8.21 patients], P = .02), with similar specificity. Conclusion The CT-based DL model identified patients at high risk among those with clinical stage IA NSCLC who underwent segmentectomy, outperforming the JCOG criteria. © RSNA, 2024 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pengyang完成签到 ,获得积分10
1秒前
Sean完成签到,获得积分10
1秒前
一瓶他克莫司完成签到 ,获得积分10
1秒前
coolkid完成签到 ,获得积分10
2秒前
2秒前
在水一方应助sherry采纳,获得10
4秒前
hakuna_matata完成签到 ,获得积分10
7秒前
Lynn发布了新的文献求助10
8秒前
山乞凡完成签到 ,获得积分10
9秒前
9秒前
15秒前
lingod完成签到,获得积分10
15秒前
哔哩哔哩往上爬完成签到 ,获得积分10
18秒前
滴哒应助Lynn采纳,获得30
21秒前
岩新完成签到 ,获得积分10
22秒前
禹代秋完成签到 ,获得积分10
22秒前
搬砖美少女完成签到,获得积分10
23秒前
小包子完成签到,获得积分10
23秒前
嘀嘀哒哒完成签到,获得积分10
26秒前
jackie完成签到,获得积分10
27秒前
欢喜可愁完成签到,获得积分10
27秒前
蓝桉完成签到,获得积分10
32秒前
King强完成签到,获得积分10
35秒前
A12138完成签到 ,获得积分10
36秒前
我刚上小学完成签到,获得积分10
39秒前
不争馒头争口气完成签到,获得积分10
40秒前
如愿完成签到 ,获得积分0
43秒前
qks完成签到 ,获得积分10
45秒前
大俊哥完成签到,获得积分10
46秒前
眯眯眼的青文完成签到,获得积分10
46秒前
yin完成签到,获得积分10
49秒前
1111完成签到 ,获得积分10
51秒前
52秒前
yin发布了新的文献求助10
53秒前
sherry发布了新的文献求助10
55秒前
星丶完成签到 ,获得积分10
55秒前
短巷完成签到 ,获得积分10
55秒前
xiongqi完成签到 ,获得积分10
56秒前
Chenqzl完成签到 ,获得积分10
57秒前
Lynn完成签到,获得积分20
58秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137067
求助须知:如何正确求助?哪些是违规求助? 2788055
关于积分的说明 7784485
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625557
版权声明 601010