已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Lightweight Object Detector With Deformable Upsampling for Marine Organism Detection

增采样 计算机科学 探测器 有机体 对象(语法) 目标检测 计算机视觉 人工智能 地质学 模式识别(心理学) 电信 图像(数学) 古生物学
作者
Wenjia Ouyang,Yanhui Wei,G Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:3
标识
DOI:10.1109/tim.2024.3385846
摘要

Marine organism detection is a significant topic in the rational development and utilization of ocean resources. Due to the low computational ability of underwater vehicles, large-scale object detection models cannot be applied to them. In this paper, firstly, a lightweight feature extraction network named Mobile-bone is adopted, which not only significantly reduces parameters but also combines the advantages of convolutional neural networks (CNNS) and vision transformers (ViTs) to learn global representations. Secondly, we put forward a novel upsampling method named deformable upsampling for feature fusion networks. Our proposed deformable upsampling is a generalization-effective upsampling operation that leverages semantic alignment rather than spatial alignment to reduce the error in the upsampling process. Experimental results indicate that deformable upsampling is appropriate for diverse feature fusion networks and significantly boosts the precision of underwater object detectors by only increasing 0.39 M parameters. Finally, our proposed detector has promising detection accuracy on the underwater open dataset, and it has also performed exceptionally well when ported to the embedded device for detecting marine organisms in real-world scenarios. Code and models about DU-MobileYOLO are available at: https://github.com/ZERO-SPACE-X/ DU-MobileYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
towerman发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
2秒前
lio完成签到,获得积分10
3秒前
4秒前
斜阳完成签到 ,获得积分10
5秒前
Shawnchan完成签到,获得积分10
6秒前
6秒前
万能图书馆应助明水采纳,获得30
7秒前
8秒前
善学以致用应助朱虹采纳,获得10
9秒前
123发布了新的文献求助10
9秒前
Rondab应助眯眯眼的宛白采纳,获得10
10秒前
有人应助眯眯眼的宛白采纳,获得10
10秒前
Zoe发布了新的文献求助10
10秒前
彩色靖儿发布了新的文献求助10
11秒前
DSFSD发布了新的文献求助10
12秒前
甪用发布了新的文献求助10
13秒前
13秒前
神经蛙完成签到,获得积分10
14秒前
超级的妙晴完成签到 ,获得积分10
16秒前
17秒前
雪白寄容关注了科研通微信公众号
17秒前
Hello应助Zhy采纳,获得10
17秒前
嘉仔发布了新的文献求助10
18秒前
韩凡发布了新的文献求助10
18秒前
19秒前
林先生发布了新的文献求助10
21秒前
DSFSD完成签到,获得积分10
22秒前
XIAOWANG发布了新的文献求助10
23秒前
23秒前
value发布了新的文献求助10
27秒前
CC完成签到,获得积分10
29秒前
30秒前
山居秋暝完成签到 ,获得积分10
30秒前
Good_小鬼完成签到,获得积分10
31秒前
bkagyin应助XIAOWANG采纳,获得10
32秒前
Orange应助XIAOWANG采纳,获得30
32秒前
yydragen应助XIAOWANG采纳,获得30
32秒前
33秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021