A Lightweight Object Detector With Deformable Upsampling for Marine Organism Detection

增采样 计算机科学 探测器 有机体 对象(语法) 目标检测 计算机视觉 人工智能 地质学 模式识别(心理学) 电信 图像(数学) 古生物学
作者
Wenjia Ouyang,Yanhui Wei,G Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:9
标识
DOI:10.1109/tim.2024.3385846
摘要

Marine organism detection is a significant topic in the rational development and utilization of ocean resources. Due to the low computational ability of underwater vehicles, large-scale object detection models cannot be applied to them. In this paper, firstly, a lightweight feature extraction network named Mobile-bone is adopted, which not only significantly reduces parameters but also combines the advantages of convolutional neural networks (CNNS) and vision transformers (ViTs) to learn global representations. Secondly, we put forward a novel upsampling method named deformable upsampling for feature fusion networks. Our proposed deformable upsampling is a generalization-effective upsampling operation that leverages semantic alignment rather than spatial alignment to reduce the error in the upsampling process. Experimental results indicate that deformable upsampling is appropriate for diverse feature fusion networks and significantly boosts the precision of underwater object detectors by only increasing 0.39 M parameters. Finally, our proposed detector has promising detection accuracy on the underwater open dataset, and it has also performed exceptionally well when ported to the embedded device for detecting marine organisms in real-world scenarios. Code and models about DU-MobileYOLO are available at: https://github.com/ZERO-SPACE-X/ DU-MobileYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘惜海完成签到,获得积分10
1秒前
2秒前
ryen完成签到,获得积分10
2秒前
2秒前
Jarwee完成签到,获得积分10
4秒前
fireking_sid完成签到,获得积分10
5秒前
6秒前
舒适的石头完成签到,获得积分10
6秒前
无极微光应助xue采纳,获得20
7秒前
meizi0109完成签到 ,获得积分10
8秒前
活泼的棒棒糖完成签到 ,获得积分10
8秒前
9秒前
11秒前
洛阳官人完成签到,获得积分10
13秒前
康师傅给康师傅的求助进行了留言
13秒前
13秒前
欧斌完成签到,获得积分10
13秒前
13秒前
13秒前
心行完成签到 ,获得积分10
14秒前
14秒前
甜美的瑾瑜完成签到,获得积分10
14秒前
15秒前
15秒前
热血马儿完成签到,获得积分10
15秒前
spp完成签到,获得积分10
15秒前
jieni完成签到,获得积分10
16秒前
橙子完成签到 ,获得积分10
17秒前
zheng華发布了新的文献求助10
17秒前
19秒前
19秒前
19秒前
lcx发布了新的文献求助10
19秒前
20秒前
陌上之心发布了新的文献求助10
21秒前
honey发布了新的文献求助10
22秒前
22秒前
24秒前
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569751
求助须知:如何正确求助?哪些是违规求助? 4654787
关于积分的说明 14710532
捐赠科研通 4595981
什么是DOI,文献DOI怎么找? 2522202
邀请新用户注册赠送积分活动 1493421
关于科研通互助平台的介绍 1463987