A Lightweight Object Detector With Deformable Upsampling for Marine Organism Detection

增采样 计算机科学 探测器 有机体 对象(语法) 目标检测 计算机视觉 人工智能 地质学 模式识别(心理学) 电信 图像(数学) 古生物学
作者
Wenjia Ouyang,Yanhui Wei,G Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:4
标识
DOI:10.1109/tim.2024.3385846
摘要

Marine organism detection is a significant topic in the rational development and utilization of ocean resources. Due to the low computational ability of underwater vehicles, large-scale object detection models cannot be applied to them. In this paper, firstly, a lightweight feature extraction network named Mobile-bone is adopted, which not only significantly reduces parameters but also combines the advantages of convolutional neural networks (CNNS) and vision transformers (ViTs) to learn global representations. Secondly, we put forward a novel upsampling method named deformable upsampling for feature fusion networks. Our proposed deformable upsampling is a generalization-effective upsampling operation that leverages semantic alignment rather than spatial alignment to reduce the error in the upsampling process. Experimental results indicate that deformable upsampling is appropriate for diverse feature fusion networks and significantly boosts the precision of underwater object detectors by only increasing 0.39 M parameters. Finally, our proposed detector has promising detection accuracy on the underwater open dataset, and it has also performed exceptionally well when ported to the embedded device for detecting marine organisms in real-world scenarios. Code and models about DU-MobileYOLO are available at: https://github.com/ZERO-SPACE-X/ DU-MobileYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
江幻天完成签到,获得积分10
2秒前
韩钰小宝完成签到 ,获得积分10
13秒前
飞快的雅青完成签到 ,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Kidmuse完成签到,获得积分10
21秒前
追寻的续完成签到 ,获得积分10
21秒前
21秒前
bckl888完成签到,获得积分10
22秒前
22秒前
bill完成签到,获得积分10
23秒前
明理问柳发布了新的文献求助10
27秒前
ky应助xiaoX12138采纳,获得10
28秒前
明理问柳完成签到,获得积分10
34秒前
坚强的嚣完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
36秒前
gxzsdf完成签到 ,获得积分10
39秒前
我思故我在完成签到,获得积分10
41秒前
42秒前
阿帕奇完成签到 ,获得积分10
45秒前
Conner完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
49秒前
zhang完成签到 ,获得积分10
50秒前
wol007完成签到 ,获得积分10
52秒前
123完成签到 ,获得积分10
53秒前
Justtry完成签到 ,获得积分20
53秒前
naiyouqiu1989完成签到,获得积分10
55秒前
沿途有你完成签到 ,获得积分10
55秒前
花生四烯酸完成签到 ,获得积分10
57秒前
科科通通完成签到,获得积分10
57秒前
WYK完成签到 ,获得积分10
1分钟前
1分钟前
学海行舟完成签到 ,获得积分10
1分钟前
黑眼圈完成签到 ,获得积分10
1分钟前
幸福的羿完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
霍明轩完成签到 ,获得积分10
1分钟前
游艺完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
是盐的学术号吖完成签到 ,获得积分10
1分钟前
空2完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104