A Lightweight Object Detector With Deformable Upsampling for Marine Organism Detection

增采样 计算机科学 探测器 有机体 对象(语法) 目标检测 计算机视觉 人工智能 地质学 模式识别(心理学) 电信 图像(数学) 古生物学
作者
Wenjia Ouyang,Yanhui Wei,G Liu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-9 被引量:3
标识
DOI:10.1109/tim.2024.3385846
摘要

Marine organism detection is a significant topic in the rational development and utilization of ocean resources. Due to the low computational ability of underwater vehicles, large-scale object detection models cannot be applied to them. In this paper, firstly, a lightweight feature extraction network named Mobile-bone is adopted, which not only significantly reduces parameters but also combines the advantages of convolutional neural networks (CNNS) and vision transformers (ViTs) to learn global representations. Secondly, we put forward a novel upsampling method named deformable upsampling for feature fusion networks. Our proposed deformable upsampling is a generalization-effective upsampling operation that leverages semantic alignment rather than spatial alignment to reduce the error in the upsampling process. Experimental results indicate that deformable upsampling is appropriate for diverse feature fusion networks and significantly boosts the precision of underwater object detectors by only increasing 0.39 M parameters. Finally, our proposed detector has promising detection accuracy on the underwater open dataset, and it has also performed exceptionally well when ported to the embedded device for detecting marine organisms in real-world scenarios. Code and models about DU-MobileYOLO are available at: https://github.com/ZERO-SPACE-X/ DU-MobileYOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助寒霁采纳,获得10
刚刚
科研通AI2S应助AixGnad采纳,获得10
1秒前
万能图书馆应助昂口3采纳,获得10
1秒前
1秒前
1秒前
ltt发布了新的文献求助10
1秒前
pd发布了新的文献求助20
2秒前
困芃发布了新的文献求助10
2秒前
隐形曼青应助好好好采纳,获得10
3秒前
充电宝应助river_121采纳,获得10
3秒前
4秒前
李涛涛发布了新的文献求助10
4秒前
风趣的飞荷完成签到,获得积分10
4秒前
lina发布了新的文献求助10
5秒前
年轻的冷雁完成签到,获得积分10
5秒前
希望天下0贩的0应助Hudson采纳,获得10
5秒前
白石杏完成签到,获得积分10
6秒前
万能图书馆应助hannah采纳,获得10
6秒前
luna发布了新的文献求助10
7秒前
qaz完成签到,获得积分10
8秒前
ED应助帅气的猫采纳,获得10
8秒前
俭朴映阳发布了新的文献求助10
8秒前
8秒前
9秒前
单纯的亦云完成签到,获得积分20
9秒前
9秒前
SYLH应助FLZLC采纳,获得10
9秒前
内坻崿完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
倩倩发布了新的文献求助10
11秒前
欧阳振应助dan采纳,获得10
11秒前
13秒前
13秒前
ltt完成签到,获得积分10
13秒前
矫仁瑞完成签到,获得积分20
13秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961496
求助须知:如何正确求助?哪些是违规求助? 3507837
关于积分的说明 11138394
捐赠科研通 3240311
什么是DOI,文献DOI怎么找? 1790903
邀请新用户注册赠送积分活动 872636
科研通“疑难数据库(出版商)”最低求助积分说明 803288