REAF: ROI Extraction and Adaptive Fusion for Breast Cancer Diagnosis in Ultrasound Images

乳腺癌 感兴趣区域 乳腺超声检查 人工智能 计算机科学 超声波 癌症 模式识别(心理学) 乳腺摄影术 医学 放射科 内科学
作者
Ziyang Zhang,Jia Wei Lim,Yuanxun Zheng,Bozhao Chen,Dongxin Chen,Yi Lin
标识
DOI:10.1109/bibm58861.2023.10385941
摘要

Breast cancer leads to the top cause of death among women worldwide. Early detection of breast cancer is the most effective way to reduce the risk of death and increase the likelihood of survival. Breast ultrasound imaging is an essential test for early detection but its accurate evaluation is difficult due to the limited number of experienced sonographers. So the computer-aided system for breast cancer diagnosis on ultrasound images is vitally necessary. Recent breast cancer diagnosis methods are mostly developed by improving or transferring visual deep models to breast cancer diagnosis. These methods ignored the characteristics of breast cancer on ultrasound images. Some methods fuse the pre-defined region of interest (ROI) to adapt the characteristics of ultrasound images but cannot diagnose those samples whose ROIs are not defined. In this paper, we propose a novel framework, ROI Extraction and Adaptive Fusion (REAF), for breast cancer diagnosis on ultrasound images. To make the framework be applied to the samples without pre-defined ROIs as well as incorporate the characteristics of breast cancer on ultrasound images, the proposed REAF firstly extracts the ROI of breast tumor areas as a confidence degree map. Then we propose an adaptive fusion method to fuse the extracted ROI into the downstream diagnostic model. In addition, we propose a pair augmentation method to increase the variety of samples for enhancing the generalization of the proposed REAF. The experimental results demonstrate that the REAF surpasses state-of-the-art visual classification models and breast cancer methods. For the evaluation of the REAF, the AUC reaches 95.52%, the accuracy reaches 88.97%, the specificity reaches 92.86%, the precision reaches 89.43%, the recall reaches 86.82% and the f1-score reaches 88.05%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lv发布了新的文献求助10
2秒前
称心寒松发布了新的文献求助10
4秒前
6秒前
科研通AI2S应助干雅柏采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
华仔应助无情芝麻采纳,获得10
10秒前
11秒前
科研通AI5应助结实的傲儿采纳,获得10
11秒前
贝林7发布了新的文献求助10
12秒前
Rosemary完成签到,获得积分10
12秒前
万能图书馆应助lv采纳,获得10
12秒前
科研小崩豆完成签到,获得积分10
13秒前
13秒前
pang发布了新的文献求助10
13秒前
SciGPT应助廖无极采纳,获得10
13秒前
上官若男应助liwuhuai采纳,获得10
13秒前
Nacy完成签到 ,获得积分10
13秒前
陶陶发布了新的文献求助10
15秒前
橙子发布了新的文献求助10
15秒前
15秒前
阳阳发布了新的文献求助10
15秒前
16秒前
16秒前
大个应助萝卜脚踝采纳,获得10
16秒前
18秒前
天天快乐应助失眠的耳机采纳,获得10
18秒前
FashionBoy应助哼哼哈嘿采纳,获得10
20秒前
20秒前
干雅柏发布了新的文献求助10
21秒前
飘逸千万发布了新的文献求助10
21秒前
21秒前
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得30
22秒前
Orange应助科研通管家采纳,获得20
22秒前
xiaokang123应助科研通管家采纳,获得10
22秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727927
求助须知:如何正确求助?哪些是违规求助? 3272991
关于积分的说明 9979382
捐赠科研通 2988370
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817