Three-dimensional lattice Boltzmann simulations for droplet impact and freezing on ultra-cold superhydrophobic surfaces

格子Boltzmann方法 机械 物理 工作(物理) 流量(数学) 材料科学 热力学
作者
Yunjie Xu,Linlin Tian,Qingyong Bian,Wei Guo,Chunling Zhu,Ning Zhao
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:6
标识
DOI:10.1063/5.0176053
摘要

Droplet impact and freezing on cold surfaces is a widely encountered multi-physical phenomenon involving droplet deformation and the liquid–solid phase change. Due to its complexity in nature, it is challenging to simulate the three-dimensional (3D) droplet impact and freezing process. Furthermore, due to the limitation of experimental techniques, it is not easy to experimentally investigate the impact of liquid droplets on ultra-cold superhydrophobic surfaces, which is crucial in some applications. Thus, in the present work, a 3D lattice Boltzmann (LB) method is developed to simulate the droplet impact and freezing on an ultra-cold superhydrophobic surface, in which an enhanced cascaded LB method is used to solve the multiphase flow field, and a multi-relaxation-time scheme is applied to solve the liquid–solid phase change model. The previous experimental results are numerically reproduced, proving that the present model can satisfactorily describe the droplet impact and solidification. The surface temperatures have no significant influence on droplet spreading. However, during the droplet retraction, a rim of ice first appears near the three-phase contact line, and then, the droplet bottom will completely solidify into ice. The occurrence of solidification at the bottom of the droplet will lead the droplet to break at a lower impact velocity, which can only be observed at a high Weber number on the room-temperature superhydrophobic surface. In addition, the effects of surface temperatures and Weber numbers on the evolution of spreading factors and space-averaged heat flux are also quantitatively analyzed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星海种花完成签到 ,获得积分10
1秒前
BH完成签到,获得积分10
3秒前
慕青应助zdl采纳,获得10
3秒前
平常晓蓝发布了新的文献求助10
3秒前
zjw发布了新的文献求助10
3秒前
Ava应助妮夏采纳,获得10
5秒前
橙子完成签到,获得积分10
5秒前
优雅狗完成签到,获得积分10
7秒前
7秒前
ZYA1999发布了新的文献求助10
7秒前
yuyu发布了新的文献求助10
8秒前
8秒前
8秒前
10秒前
852应助sunshine采纳,获得10
11秒前
小二郎应助les3采纳,获得10
12秒前
12秒前
12秒前
Hh完成签到,获得积分10
12秒前
想你的腋发布了新的文献求助10
13秒前
传奇3应助科学家采纳,获得10
14秒前
zdl发布了新的文献求助10
16秒前
跋扈发布了新的文献求助10
18秒前
19秒前
凉白开发布了新的文献求助10
19秒前
泡泡完成签到 ,获得积分10
20秒前
科研通AI2S应助xff采纳,获得10
23秒前
科研通AI2S应助111采纳,获得10
23秒前
超帅的怡完成签到 ,获得积分10
23秒前
ZML完成签到,获得积分10
23秒前
24秒前
甜蜜冰淇淋完成签到 ,获得积分10
27秒前
结实星星发布了新的文献求助50
27秒前
橙子发布了新的文献求助30
29秒前
CipherSage应助朴实彩虹采纳,获得20
31秒前
wyh295352318发布了新的文献求助10
34秒前
香蕉觅云应助xhcdz采纳,获得10
34秒前
完美世界应助感动曼香采纳,获得10
36秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Discourse, Identities and Genres in Corporate Communication 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3359822
求助须知:如何正确求助?哪些是违规求助? 2982407
关于积分的说明 8703656
捐赠科研通 2664099
什么是DOI,文献DOI怎么找? 1458822
科研通“疑难数据库(出版商)”最低求助积分说明 675293
邀请新用户注册赠送积分活动 666390