How does worker mobility affect business adoption of a new technology? The case of machine learning

情感(语言学) 早期采用者 激励 业务 分析 代理(统计) 产业组织 技术变革 劳动经济学 营销 人口经济学 经济 计算机科学 微观经济学 语言学 哲学 数据科学 机器学习 宏观经济学
作者
Ruyu Chen,Natarajan Balasubramanian,Chris Forman
出处
期刊:Strategic Management Journal [Wiley]
卷期号:45 (8): 1510-1538 被引量:2
标识
DOI:10.1002/smj.3595
摘要

Abstract Research Summary We investigate how worker mobility influences the adoption of a new technology using state‐level changes to the enforceability of noncompete agreements as an exogenous shock to worker mobility. Using data on over 153,000 establishments from 2010 and 2018, we find that changes that facilitate worker movements are associated with a significant decline in the likelihood of adoption of machine learning. Moreover, we find that the magnitude of decline depends upon the size of the establishment, the extent of predictive analytics adoption in its industry, and the number of large establishments in the same industry‐location. These results are consistent with the view that increases in outward worker mobility increase costs for adoption of a new technology that involves significant downstream investments in the early years of its diffusion. Managerial Summary Successful business adoption of new technologies such as machine learning requires skilled workers with experience in implementing those technologies. In the early years of technology diffusion workers in early adopting businesses typically acquire these skills through on‐the‐job learning that is paid for by the adopter. So, if such early adopters face an increased risk of those skilled workers quitting, then their incentives to adopt the technology decrease. We examine this possibility using changes in noncompete enforceability as a proxy for changes in worker mobility and find that the likelihood of adopting machine learning decreases as the risk of worker mobility increases, particularly for larger establishments, establishments in industries where adoption may be more beneficial and in locations with many large competing establishments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tmrrrrrr完成签到,获得积分10
1秒前
文艺鞋子完成签到,获得积分20
1秒前
1秒前
脑洞疼应助宁静的夏天采纳,获得30
2秒前
科研通AI2S应助Loscipy采纳,获得10
3秒前
文艺鞋子发布了新的文献求助10
4秒前
Laniakea完成签到,获得积分10
4秒前
colorfulblue完成签到,获得积分10
5秒前
鹦鹉发布了新的文献求助30
5秒前
ning完成签到,获得积分10
6秒前
高贵怀蕾发布了新的文献求助30
6秒前
7秒前
9秒前
Owen应助边瑞明采纳,获得10
9秒前
9秒前
小糯完成签到,获得积分10
9秒前
Lucas应助积极的忆曼采纳,获得10
10秒前
搜集达人应助威威采纳,获得10
10秒前
侬先生发布了新的文献求助10
10秒前
一颗小白菜完成签到,获得积分10
10秒前
10秒前
11秒前
Yara.H发布了新的文献求助10
11秒前
11秒前
robert3324应助Magnolia采纳,获得10
12秒前
天天快乐应助ibuki采纳,获得10
12秒前
13秒前
细腻慕儿完成签到 ,获得积分10
13秒前
13秒前
Strongly发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
上官若男应助Wang采纳,获得10
18秒前
vine发布了新的文献求助10
19秒前
ag发布了新的文献求助10
20秒前
20秒前
owoow发布了新的文献求助10
20秒前
高贵怀蕾完成签到,获得积分10
20秒前
112发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125118
求助须知:如何正确求助?哪些是违规求助? 2775421
关于积分的说明 7726646
捐赠科研通 2430997
什么是DOI,文献DOI怎么找? 1291569
科研通“疑难数据库(出版商)”最低求助积分说明 622188
版权声明 600352