Machine-Learning Assisted Analysis of Frac Water Hammer

锤子 计算机科学 水锤 人工智能 工程类 机械工程
作者
Stanislav Sheludko,Elspeth Crawford,Maksim Oparin,F. Aleid
出处
期刊:SPE Hydraulic Fracturing Technology Conference and Exhibition
标识
DOI:10.2118/217781-ms
摘要

Abstract The purpose of this work was to evaluate if frac water hammer signature characteristics are representative of important hydraulic fracture and reservoir properties in a horizontal well and if those characteristics can be used as inputs in a predictive Machine Learning model. Water hammer is an oscillatory pressure signal generated as a result of an abrupt change in wellbore fluid velocity, for example at the end of a fracturing treatment when the pump rate is quickly dropped to zero. Authors developed an algorithm in python to automatically identify surface pressure and fluid pump rate channels in the raw data, detect and flag end of pumping events, parse out the water hammer and pressure decline signal from raw data. Numerical optimization algorithm was then used to approximate water hammer characteristics from the pressure signal based on the modified damped sine wave equation. The derived equation coefficients were used as inputs (features) in a Random Forest classification model to classify individual fracture stage contributions to a horizontal well's production profile. Production log tool (PLT) results from 8 horizontal unconventional wells and corresponding 1-second field data for 78 hydraulic stage fracture treatments were used in the study. The water hammer characteristics and parameters of the theoretical vs. actual curve match for each stage, such as initial amplitude of the signal, decay rate, phase angle, angular frequency, number of peaks, etc. were used as features for modeling. The data was split into 70 % −30 % train and test sets. A Random Forest Classifier model was trained on the train set to classify individual fracture stages in a horizontal well as either contributing or non-contributing to production. The model was validated against the test set with overall test classification accuracy of 0.71 and F1-Score of 0.72. Based on the study the authors conclude that water hammer characteristics derived from surface pressure signal via curve-matching technique can be useful for classification of fracture stage contribution to production in a horizontal well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
coffee完成签到,获得积分20
刚刚
啦啦啦啦啦完成签到,获得积分10
刚刚
HEIKU应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
AWGTT完成签到 ,获得积分10
刚刚
yanzu应助科研通管家采纳,获得10
刚刚
FashionBoy应助自觉的凛采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
yu完成签到,获得积分20
1秒前
学好久发布了新的文献求助10
1秒前
大个应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
HEIKU应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
Wuxg完成签到,获得积分10
2秒前
zhuzhu发布了新的文献求助10
2秒前
可取完成签到,获得积分10
2秒前
zain完成签到 ,获得积分10
2秒前
3秒前
春一又木完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
WUWU2435完成签到,获得积分10
5秒前
南亭完成签到,获得积分10
5秒前
充电宝应助无心的安青采纳,获得10
5秒前
科研通AI5应助活泼滑板采纳,获得10
5秒前
5秒前
5秒前
英姑应助微笑涔雨采纳,获得10
6秒前
苗条的柏柳完成签到,获得积分20
6秒前
6秒前
nykal完成签到 ,获得积分10
7秒前
xfy完成签到 ,获得积分10
7秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661348
求助须知:如何正确求助?哪些是违规求助? 3222425
关于积分的说明 9745450
捐赠科研通 2932009
什么是DOI,文献DOI怎么找? 1605406
邀请新用户注册赠送积分活动 757872
科研通“疑难数据库(出版商)”最低求助积分说明 734569