自编码
混乱的
变压器
计算机科学
代表(政治)
流体力学
流量(数学)
人工智能
算法
特征学习
应用数学
模式识别(心理学)
人工神经网络
数学
物理
机械
几何学
电压
量子力学
政治
政治学
法学
作者
Alberto Solera-Rico,Carlos Sanmiguel Vila,M.A. Gómez,Yuning Wang,Abdulrahman Almashjary,Scott T. M. Dawson,Ricardo Vinuesa
标识
DOI:10.1038/s41467-024-45578-4
摘要
Abstract Variational autoencoder architectures have the potential to develop reduced-order models for chaotic fluid flows. We propose a method for learning compact and near-orthogonal reduced-order models using a combination of a β -variational autoencoder and a transformer, tested on numerical data from a two-dimensional viscous flow in both periodic and chaotic regimes. The β -variational autoencoder is trained to learn a compact latent representation of the flow velocity, and the transformer is trained to predict the temporal dynamics in latent-space. Using the β -variational autoencoder to learn disentangled representations in latent-space, we obtain a more interpretable flow model with features that resemble those observed in the proper orthogonal decomposition, but with a more efficient representation. Using Poincaré maps, the results show that our method can capture the underlying dynamics of the flow outperforming other prediction models. The proposed method has potential applications in other fields such as weather forecasting, structural dynamics or biomedical engineering.
科研通智能强力驱动
Strongly Powered by AbleSci AI