Integrating AI-powered digital pathology and imaging mass cytometry identifies key classifiers of tumor cells, stroma, and immune cells in non-small cell lung cancer

质量细胞仪 基质 病理 免疫系统 肿瘤微环境 腺癌 癌症 癌症研究 医学 生物 免疫学 免疫组织化学 表型 生物化学 基因 遗传学
作者
Alessandra Rigamonti,Marika Viatore,Rebecca Polidori,Daoud Rahal,Marco Erreni,Maria Rita Fumagalli,Damiano Zanini,Andrea Doni,Anna Rita Putignano,Paola Bossi,Emanuele Voulaz,Marco Alloisio,Sabrina Rossi,Paolo Andrea Zucali,Armando Santoro,Vittoria Balzano,Paola Nisticò,Friedrich Feuerhake,Alberto Mantovani,Massimo Locati,Federica Marchesi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (7): 1165-1177
标识
DOI:10.1158/0008-5472.can-23-1698
摘要

Abstract Artificial intelligence (AI)–powered approaches are becoming increasingly used as histopathologic tools to extract subvisual features and improve diagnostic workflows. On the other hand, hi-plex approaches are widely adopted to analyze the immune ecosystem in tumor specimens. Here, we aimed at combining AI-aided histopathology and imaging mass cytometry (IMC) to analyze the ecosystem of non–small cell lung cancer (NSCLC). An AI-based approach was used on hematoxylin and eosin (H&E) sections from 158 NSCLC specimens to accurately identify tumor cells, both adenocarcinoma and squamous carcinoma cells, and to generate a classifier of tumor cell spatial clustering. Consecutive tissue sections were stained with metal-labeled antibodies and processed through the IMC workflow, allowing quantitative detection of 24 markers related to tumor cells, tissue architecture, CD45+ myeloid and lymphoid cells, and immune activation. IMC identified 11 macrophage clusters that mainly localized in the stroma, except for S100A8+ cells, which infiltrated tumor nests. T cells were preferentially localized in peritumor areas or in tumor nests, the latter being associated with better prognosis, and they were more abundant in highly clustered tumors. Integrated tumor and immune classifiers were validated as prognostic on whole slides. In conclusion, integration of AI-powered H&E and multiparametric IMC allows investigation of spatial patterns and reveals tissue relevant features with clinical relevance. Significance: Leveraging artificial intelligence–powered H&E analysis integrated with hi-plex imaging mass cytometry provides insights into the tumor ecosystem and can translate tumor features into classifiers to predict prognosis, genotype, and therapy response.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荣安安发布了新的文献求助10
刚刚
瑶啊瑶完成签到,获得积分10
2秒前
3秒前
充电宝应助老阳采纳,获得10
5秒前
小子完成签到,获得积分20
5秒前
迷路荧发布了新的文献求助10
7秒前
荣安安完成签到,获得积分10
9秒前
10秒前
11秒前
上官若男应助hxx采纳,获得10
11秒前
13秒前
13秒前
小趴菜发布了新的文献求助10
16秒前
橘子发布了新的文献求助10
17秒前
uwu发布了新的文献求助10
18秒前
19秒前
老阳发布了新的文献求助10
19秒前
范断秋完成签到 ,获得积分10
19秒前
20秒前
FashionBoy应助1762120采纳,获得10
23秒前
23秒前
小巧寻桃完成签到 ,获得积分20
24秒前
张半首发布了新的文献求助10
24秒前
uwu完成签到,获得积分10
27秒前
30秒前
匹诺曹发布了新的文献求助10
30秒前
科研通AI5应助橘子采纳,获得10
31秒前
31秒前
32秒前
爆米花应助吴陈采纳,获得10
32秒前
JavedAli完成签到,获得积分10
33秒前
传奇3应助qsj采纳,获得10
34秒前
xuan完成签到,获得积分10
35秒前
余雨梅完成签到,获得积分10
35秒前
35秒前
舒心猕猴桃完成签到,获得积分10
36秒前
小白发布了新的文献求助10
38秒前
爆米花应助lsy采纳,获得10
38秒前
张半首完成签到,获得积分10
39秒前
惜曦完成签到 ,获得积分10
40秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975