Machine learning‐based peptide‐spectrum match rescoring opens up the immunopeptidome

计算机科学 鉴定(生物学) 计算生物学 钥匙(锁) 错误发现率 基因组 人工智能 机器学习 生物信息学 生物 遗传学 基因 植物 计算机安全
作者
Charlotte Adams,Kris Laukens,Wout Bittremieux,Kurt Boonen
出处
期刊:Proteomics [Wiley]
卷期号:24 (8) 被引量:6
标识
DOI:10.1002/pmic.202300336
摘要

Abstract Immunopeptidomics is a key technology in the discovery of targets for immunotherapy and vaccine development. However, identifying immunopeptides remains challenging due to their non‐tryptic nature, which results in distinct spectral characteristics. Moreover, the absence of strict digestion rules leads to extensive search spaces, further amplified by the incorporation of somatic mutations, pathogen genomes, unannotated open reading frames, and post‐translational modifications. This inflation in search space leads to an increase in random high‐scoring matches, resulting in fewer identifications at a given false discovery rate. Peptide‐spectrum match rescoring has emerged as a machine learning‐based solution to address challenges in mass spectrometry‐based immunopeptidomics data analysis. It involves post‐processing unfiltered spectrum annotations to better distinguish between correct and incorrect peptide‐spectrum matches. Recently, features based on predicted peptidoform properties, including fragment ion intensities, retention time, and collisional cross section, have been used to improve the accuracy and sensitivity of immunopeptide identification. In this review, we describe the diverse bioinformatics pipelines that are currently available for peptide‐spectrum match rescoring and discuss how they can be used for the analysis of immunopeptidomics data. Finally, we provide insights into current and future machine learning solutions to boost immunopeptide identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honglingjing应助CXSCXD采纳,获得10
1秒前
pluto应助yihua采纳,获得10
2秒前
搜集达人应助西西弗采纳,获得20
3秒前
4秒前
宋秋莲发布了新的文献求助10
4秒前
czzlancer完成签到,获得积分10
4秒前
4秒前
李健应助涨涨涨采纳,获得10
6秒前
7秒前
8秒前
9秒前
Jeohurd完成签到,获得积分10
9秒前
无花果应助研友_84mk0L采纳,获得10
9秒前
守夜人完成签到,获得积分10
9秒前
丁玲玲完成签到,获得积分10
9秒前
9秒前
dingfree发布了新的文献求助10
10秒前
10秒前
10秒前
在水一方应助郎飞结采纳,获得10
10秒前
JOJO发布了新的文献求助10
11秒前
CyberHamster完成签到,获得积分10
11秒前
打打应助生sheng采纳,获得10
12秒前
研友_Z72O4n完成签到,获得积分20
13秒前
13秒前
CipherSage应助张伟采纳,获得10
13秒前
萝卜叶叶完成签到,获得积分10
14秒前
Jeohurd发布了新的文献求助10
15秒前
西西弗完成签到,获得积分10
15秒前
研友_Z72O4n发布了新的文献求助10
16秒前
16秒前
CJ发布了新的文献求助10
17秒前
大模型应助科研通管家采纳,获得10
18秒前
18秒前
嗯哼应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
所所应助科研通管家采纳,获得10
19秒前
Singularity应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3062236
求助须知:如何正确求助?哪些是违规求助? 2717208
关于积分的说明 7453481
捐赠科研通 2363221
什么是DOI,文献DOI怎么找? 1252680
科研通“疑难数据库(出版商)”最低求助积分说明 608133
版权声明 596551