Constructing Accurate and Efficient General-Purpose Atomistic Machine Learning Model with Transferable Accuracy for Quantum Chemistry

计算机科学 量子化学 量子 机器学习 数据科学 化学 物理 物理化学 量子力学 电极 电化学
作者
Yi‐Cheng Chen,Wenjie Yan,Zhanfeng Wang,Jianming Wu,Xin Xu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (21): 9500-9511 被引量:6
标识
DOI:10.1021/acs.jctc.4c01151
摘要

Density functional theory (DFT) has been a cornerstone in computational science, providing powerful insights into structure-property relationships for molecules and materials through first-principles quantum-mechanical (QM) calculations. However, the advent of atomistic machine learning (ML) is reshaping the landscape by enabling large-scale dynamics simulations and high-throughput screening at DFT-equivalent accuracy with drastically reduced computational cost. Yet, the development of general-purpose atomistic ML models as surrogates for QM calculations faces several challenges, particularly in terms of model capacity, data efficiency, and transferability across chemically diverse systems. This work introduces a novel extension of the polarizable atom interaction neural network (namely, XPaiNN) to address these challenges. Two distinct training strategies have been employed, one direct-learning and the other Δ-ML on top of a semiempirical QM method. These methodologies have been implemented within the same framework, allowing for a detailed comparison of their results. The XPaiNN models, in particular the one using Δ-ML, not only demonstrate competitive performance on standard benchmarks, but also demonstrate the effectiveness against other ML models and QM methods on comprehensive downstream tasks, including noncovalent interactions, reaction energetics, barrier heights, geometry optimization and reaction thermodynamics, etc. This work represents a significant step forward in the pursuit of accurate and efficient atomistic ML models of general-purpose, capable of handling complex chemical systems with transferable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷书竹发布了新的文献求助10
1秒前
令人秃头发布了新的文献求助10
2秒前
iyy完成签到,获得积分20
2秒前
LuciusHe发布了新的文献求助10
2秒前
领导范儿应助NNUsusan采纳,获得10
2秒前
搞怪城完成签到,获得积分10
2秒前
水吉水吉完成签到,获得积分10
2秒前
哆啦完成签到,获得积分10
3秒前
ily.发布了新的文献求助10
3秒前
FashionBoy应助科研扫地僧采纳,获得10
3秒前
admin完成签到,获得积分10
3秒前
zzzy完成签到 ,获得积分10
4秒前
4秒前
顺利紫山发布了新的文献求助10
4秒前
pluto应助宁阿霜采纳,获得10
5秒前
无辜紫菜完成签到,获得积分10
7秒前
zhugongwangdawei完成签到,获得积分10
7秒前
admin发布了新的文献求助10
7秒前
7秒前
leodu发布了新的文献求助10
8秒前
芹菜完成签到,获得积分10
8秒前
SHAO应助璇22采纳,获得10
8秒前
8秒前
DDKK发布了新的文献求助50
9秒前
ily.完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
Ava应助胡导家的菜狗采纳,获得10
11秒前
Hi完成签到 ,获得积分10
12秒前
充电宝应助lilianan采纳,获得10
12秒前
lin发布了新的文献求助20
12秒前
美好斓发布了新的文献求助30
13秒前
取昵称好难完成签到,获得积分10
13秒前
why完成签到,获得积分10
13秒前
14秒前
XIAOLI完成签到,获得积分10
14秒前
Fannia发布了新的文献求助10
14秒前
爆米花应助嘻嘻嘻采纳,获得10
14秒前
LY完成签到,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620