Constructing Accurate and Efficient General-Purpose Atomistic Machine Learning Model with Transferable Accuracy for Quantum Chemistry

计算机科学 量子化学 量子 机器学习 数据科学 化学 物理 物理化学 量子力学 电极 电化学
作者
Yi‐Cheng Chen,Wenjie Yan,Zhanfeng Wang,Jianming Wu,Xin Xu
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:20 (21): 9500-9511 被引量:1
标识
DOI:10.1021/acs.jctc.4c01151
摘要

Density functional theory (DFT) has been a cornerstone in computational science, providing powerful insights into structure-property relationships for molecules and materials through first-principles quantum-mechanical (QM) calculations. However, the advent of atomistic machine learning (ML) is reshaping the landscape by enabling large-scale dynamics simulations and high-throughput screening at DFT-equivalent accuracy with drastically reduced computational cost. Yet, the development of general-purpose atomistic ML models as surrogates for QM calculations faces several challenges, particularly in terms of model capacity, data efficiency, and transferability across chemically diverse systems. This work introduces a novel extension of the polarizable atom interaction neural network (namely, XPaiNN) to address these challenges. Two distinct training strategies have been employed, one direct-learning and the other Δ-ML on top of a semiempirical QM method. These methodologies have been implemented within the same framework, allowing for a detailed comparison of their results. The XPaiNN models, in particular the one using Δ-ML, not only demonstrate competitive performance on standard benchmarks, but also demonstrate the effectiveness against other ML models and QM methods on comprehensive downstream tasks, including noncovalent interactions, reaction energetics, barrier heights, geometry optimization and reaction thermodynamics, etc. This work represents a significant step forward in the pursuit of accurate and efficient atomistic ML models of general-purpose, capable of handling complex chemical systems with transferable accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kashing发布了新的文献求助10
4秒前
高高白曼舞完成签到,获得积分10
5秒前
折耳根完成签到 ,获得积分10
8秒前
NexusExplorer应助Kashing采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
慕青应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
18秒前
19秒前
Eusha完成签到,获得积分10
20秒前
20秒前
dear_xiaokuan发布了新的文献求助10
23秒前
monkey发布了新的文献求助10
24秒前
Abby完成签到 ,获得积分10
26秒前
Gsamber完成签到,获得积分10
27秒前
28秒前
29秒前
33应助dan1029采纳,获得10
31秒前
净禅应助dan1029采纳,获得10
31秒前
33应助dan1029采纳,获得10
31秒前
净禅应助dan1029采纳,获得10
31秒前
33应助dan1029采纳,获得10
31秒前
33应助dan1029采纳,获得10
31秒前
33应助dan1029采纳,获得10
32秒前
33应助dan1029采纳,获得10
32秒前
33应助dan1029采纳,获得10
32秒前
yunxiao完成签到 ,获得积分10
32秒前
丁一一完成签到 ,获得积分10
35秒前
NexusExplorer应助顺利鸡采纳,获得10
38秒前
39秒前
seal发布了新的文献求助10
42秒前
cdqiu发布了新的文献求助10
43秒前
dear_xiaokuan完成签到,获得积分10
45秒前
monkey完成签到,获得积分10
45秒前
晨晨完成签到 ,获得积分10
45秒前
48秒前
清爽达完成签到 ,获得积分10
48秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Metal Additive Manufacturing for Propulsion Applications 600
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3366778
求助须知:如何正确求助?哪些是违规求助? 2986613
关于积分的说明 8723485
捐赠科研通 2669091
什么是DOI,文献DOI怎么找? 1461777
科研通“疑难数据库(出版商)”最低求助积分说明 676583
邀请新用户注册赠送积分活动 667809