First-principles investigation of microscopic mechanisms underlying hole mobilities in diamond, silicon, and germanium

动性 钻石 材料科学 工程物理 纳米技术 化学物理 光电子学 化学 物理 冶金 社会学 社会科学
作者
Qiao-Lin Yang,Fanlong Meng,Wu Li,Zhi Wang,Hui-Xiong Deng,Su‐Huai Wei,F. L. Ning,Jun‐Wei Luo
出处
期刊:Physical review 卷期号:110 (15)
标识
DOI:10.1103/physrevb.110.155203
摘要

Silicon (Si) dominates the semiconductor industry but currently suffers from significant hole mobility degradation in advanced transistors due to its abnormally low hole mobility ($505\phantom{\rule{0.16em}{0ex}}{\mathrm{cm}}^{2}/\mathrm{Vs}$), compared to its group IV neighbors, diamond and germanium (Ge) (both $\ensuremath{\sim}2000\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{2}/\mathrm{Vs}$). While Ge's high mobility is understandable by its lighter effective hole mass due to its narrower direct bandgap at $\mathrm{\ensuremath{\Gamma}}$ point, diamond's superior hole mobility remains difficult to understand since its bandgap is ultrawide. Conventional wisdom attributes diamond's high mobility to reduced phonon scattering due to high acoustic phonon group velocity and optical phonon frequency, overcoming its heaviest effective mass. However, our study reveals that this mechanism alone is insufficient to explain the observed mobility. We demonstrate that the diamond's abnormally light effective hole mass is a primary factor contributing to its high mobility; otherwise, its hole mobility would be approximately nine times lower than Si's. The unexpectedly light mass in diamond stems from larger transition matrix elements, resulting from substantial electronic wave-function overlap between valence and conduction bands, remarkably overcoming the effect of diamond's large bandgap. Furthermore, our investigation uncovers a unique feature in diamond's valence band structure: an inherent strain-enhanced mobility characteristic, where the top valence band manifests as a light-hole (lh) state along certain crystallographic directions (e.g., [100]), instead of the typical heavy-hole (hh) state. Contrary to prevailing assumptions, we observe a strong coupling between holes and transverse acoustic (TA) phonons, and even TA scattering dominates over longitudinal acoustic (LA) scattering in both diamond and Si, challenging the long-held belief that TA scattering is negligible. Our calculations yield a dilation deformation potential of 3.45 eV for diamond, significantly diverging from previously reported values, e.g., 7 or $\ensuremath{-}35$ eV. This discrepancy further highlights limitations in understanding individual scattering mechanisms in diamond using classical phenomenological models. These findings shed new light on the hole mobility in semiconductors and provide new clues to enhance further the hole mobility in group IV semiconductors towards advanced semiconductor technology nodes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BillowHu发布了新的文献求助10
1秒前
谨慎乌完成签到,获得积分10
1秒前
隐形曼青应助灰灰采纳,获得10
1秒前
上官若男应助kuer采纳,获得10
2秒前
白月当归完成签到,获得积分10
3秒前
HAHAHA发布了新的文献求助10
3秒前
田様应助无私乐驹采纳,获得10
4秒前
jsdiohfsiodhg发布了新的文献求助10
5秒前
傲娇的后槽牙完成签到,获得积分10
5秒前
6秒前
科研通AI5应助Harper采纳,获得30
6秒前
liulei发布了新的文献求助10
6秒前
7秒前
7秒前
充电宝应助单薄双双采纳,获得10
7秒前
66发布了新的文献求助10
11秒前
情怀应助微生玉树采纳,获得10
11秒前
哈理老萝卜应助SSS采纳,获得50
11秒前
12秒前
小九的呀完成签到 ,获得积分10
12秒前
13秒前
草莓发布了新的文献求助10
13秒前
爆米花应助lkk采纳,获得10
13秒前
178181驳回了思源应助
14秒前
木七完成签到 ,获得积分10
14秒前
14秒前
14秒前
风趣彤完成签到,获得积分20
15秒前
16秒前
16秒前
开朗雪巧完成签到,获得积分10
16秒前
18秒前
大模型应助Steven采纳,获得10
18秒前
白夜发布了新的文献求助10
19秒前
19秒前
无私乐驹发布了新的文献求助10
19秒前
高艳完成签到,获得积分10
20秒前
风趣彤发布了新的文献求助30
20秒前
2466703767关注了科研通微信公众号
20秒前
云術发布了新的文献求助30
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542995
求助须知:如何正确求助?哪些是违规求助? 3120396
关于积分的说明 9342373
捐赠科研通 2818391
什么是DOI,文献DOI怎么找? 1549539
邀请新用户注册赠送积分活动 722168
科研通“疑难数据库(出版商)”最低求助积分说明 712992