LDMRes-Net: A Lightweight Neural Network for Efficient Medical Image Segmentation on IoT and Edge Devices

计算机科学 卷积神经网络 分割 人工智能 图像分割 稳健性(进化) 概化理论 残余物 块(置换群论) 计算机视觉 深度学习 人工神经网络 医学影像学 机器学习 算法 生物化学 化学 统计 几何学 数学 基因
作者
Shahzaib Iqbal,Tariq M. Khan,Syed S. Naqvi,Asim Naveed,Muhammad Usman,Haroon Ahmed Khan,Imran Razzak
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/jbhi.2023.3331278
摘要

In this study, we propose LDMRes-Net, a lightweight dual-multiscale residual block-based convolutional neural network tailored for medical image segmentation on IoT and edge platforms. Conventional U-Net-based models face challenges in meeting the speed and efficiency demands of real-time clinical applications, such as disease monitoring, radiation therapy, and image-guided surgery. In this study, we present the Lightweight Dual Multiscale Residual Block-based Convolutional Neural Network (LDMRes-Net), which is specifically designed to overcome these difficulties. LDMRes-Net overcomes these limitations with its remarkably low number of learnable parameters (0.072M), making it highly suitable for resource-constrained devices. The model's key innovation lies in its dual multiscale residual block architecture, which enables the extraction of refined features on multiple scales, enhancing overall segmentation performance. To further optimize efficiency, the number of filters is carefully selected to prevent overlap, reduce training time, and improve computational efficiency. The study includes comprehensive evaluations, focusing on the segmentation of the retinal image of vessels and hard exudates crucial for the diagnosis and treatment of ophthalmology. The results demonstrate the robustness, generalizability, and high segmentation accuracy of LDMRes-Net, positioning it as an efficient tool for accurate and rapid medical image segmentation in diverse clinical applications, particularly on IoT and edge platforms. Such advances hold significant promise for improving healthcare outcomes and enabling real-time medical image analysis in resource-limited settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin_jack完成签到,获得积分10
刚刚
1秒前
大头发布了新的文献求助10
1秒前
CHANGE发布了新的文献求助10
1秒前
叨叨发布了新的文献求助30
1秒前
1秒前
丘比特应助LG采纳,获得10
2秒前
平淡南霜发布了新的文献求助10
2秒前
2秒前
鸡毛发布了新的文献求助10
4秒前
jkdi发布了新的文献求助10
5秒前
Starry完成签到,获得积分10
6秒前
小姚发布了新的文献求助30
7秒前
森宝完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
天天快乐应助BBBB小拳头采纳,获得10
8秒前
森ok发布了新的文献求助10
9秒前
科研通AI2S应助xiaoxioayixi采纳,获得10
9秒前
爱学习的岁岁完成签到 ,获得积分10
10秒前
GLH发布了新的文献求助30
10秒前
黄柠檬发布了新的文献求助10
12秒前
月夜枫发布了新的文献求助10
13秒前
搜集达人应助lx采纳,获得10
13秒前
枫叶应助Soleil采纳,获得10
13秒前
13秒前
慕何发布了新的文献求助30
13秒前
Teanna完成签到,获得积分10
16秒前
16秒前
打打应助奈何桥上抬花轿采纳,获得10
16秒前
领导范儿应助王振强采纳,获得10
16秒前
17秒前
乐乐应助z.采纳,获得10
18秒前
小马甲应助decade采纳,获得10
19秒前
19秒前
19秒前
寻雾启事发布了新的文献求助10
20秒前
hcch发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
EPR Spectroscopy: Fundamentals and Methods 500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444265
求助须知:如何正确求助?哪些是违规求助? 3040376
关于积分的说明 8980892
捐赠科研通 2728958
什么是DOI,文献DOI怎么找? 1496770
科研通“疑难数据库(出版商)”最低求助积分说明 691880
邀请新用户注册赠送积分活动 689396