Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases

医学 炎症 免疫学 神经科学 心理学
作者
Brian Kim,Marc E. Rothenberg,Xin Sun,Claus Bachert,David Artis,Raza S. Zaheer,Yamo Deniz,Paul Rowe,Sonya Cyr
出处
期刊:The Journal of Allergy and Clinical Immunology [Elsevier]
卷期号:153 (4): 879-893 被引量:25
标识
DOI:10.1016/j.jaci.2023.08.017
摘要

Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation. Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation. Type 2 immunity is a specialized, evolutionarily conserved arm of the immune system that combats ectoparasitic and endoparasitic helminths, expels toxins, and promotes tissue repair.1Gandhi N.A. Bennett B.L. Graham N.M.H. Pirozzi G. Stahl N. Yancopoulos G.D. Targeting key proximal drivers of type 2 inflammation in disease.Nat Rev Drug Discov. 2016; 15: 35-50Crossref PubMed Scopus (392) Google Scholar, 2Gandhi N.A. Pirozzi G. Graham N.M. Commonality of the IL-4/IL-13 pathway in atopic diseases.Expert Rev Clin Immunol. 2017; 13: 425-437Crossref PubMed Scopus (276) Google Scholar, 3Kopp E.B. Agaronyan K. Licona-Limon I. Nish S.A. Medzhitov R. Modes of type 2 immune response initiation.Immunity. 2023; 56: 667-694Abstract Full Text Full Text PDF Scopus (1) Google Scholar, 4Molofsky A.B. Locksley R.M. The ins and outs of innate and adaptive type 2 immunity.Immunity. 2023; 56: 704-722Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar When the epithelial barrier is breached, alarmin cytokines (eg, thymic stromal lymphopoietin [TSLP], IL-25, IL-33) activate tissue-resident immune cells (such as mast cells, dendritic cells, and group 2 innate lymphoid cells [ILC2s]) while simultaneously recruiting granulocytes, including eosinophils and basophils. Collectively, these cells orchestrate a polarized type 2 immune response through type 2 cytokines, histamine, and other mediators that neutralize and expel parasitic helminths and toxins and repair the barrier through epithelial turnover, remodeling, and fibrosis. Although these processes are protective and intended to restore tissue homeostasis, in the setting of allergy and continuous barrier stress they become pathologic, resulting in a variety of chronic inflammatory diseases. Mechanical reflexes such as scratching, airway constriction, coughing, sneezing, and gastrointestinal motility also protect barrier surfaces and are triggered by direct activation of sensory neurons, often in concert with autonomic input to the target organs. Many of these manifestations are pathologically altered in diseases with type 2 immune dysregulation (Fig 1), including (but not limited to) atopic dermatitis (AD), prurigo nodularis (PN), asthma, food allergy, chronic rhinosinusitis with nasal polyps (CRSwNP), and eosinophilic esophagitis (EoE).1Gandhi N.A. Bennett B.L. Graham N.M.H. Pirozzi G. Stahl N. Yancopoulos G.D. Targeting key proximal drivers of type 2 inflammation in disease.Nat Rev Drug Discov. 2016; 15: 35-50Crossref PubMed Scopus (392) Google Scholar,2Gandhi N.A. Pirozzi G. Graham N.M. Commonality of the IL-4/IL-13 pathway in atopic diseases.Expert Rev Clin Immunol. 2017; 13: 425-437Crossref PubMed Scopus (276) Google Scholar,5Hamilton J.D. Harel S. Swanson B.N. Brian W. Chen Z. Rice M.S. et al.Dupilumab suppresses type 2 inflammatory biomarkers across multiple atopic, allergic diseases.Clin Exp Allergy. 2021; 51: 915-931Crossref PubMed Scopus (59) Google Scholar,6Le Floc'h A. Allinne J. Nagashima K. Scott G. Birchard D. Asrat S. et al.Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation.Allergy. 2020; 75: 1188-1204Crossref PubMed Scopus (163) Google Scholar The extent of similarities among the neuroimmune pathways regulating these mechanical responses remains to be fully defined (Table I7Kulka M. Sheen C.H. Tancowny B.P. Grammer L.C. Schleimer R.P. Neuropeptides activate human mast cell degranulation and chemokine production.Immunology. 2008; 123: 398-410Crossref PubMed Scopus (340) Google Scholar, 8Liang Y. Marcusson J.A. Jacobi H.H. Haak-Frendscho M. Johansson O. Histamine-containing mast cells and their relationship to NGFr-immunoreactive nerves in prurigo nodularis: a reappraisal.J Cutan Pathol. 1998; 25: 189-198Crossref PubMed Scopus (49) Google Scholar, 9Sonkoly E. Muller A. Lauerma A.I. Pivarcsi A. Soto H. Kemeny L. et al.IL-31: a new link between T cells and pruritus in atopic skin inflammation.J Allergy Clin Immunol. 2006; 117: 411-417Abstract Full Text Full Text PDF PubMed Scopus (759) Google Scholar, 10Tominaga M. Takamori K. Peripheral itch sensitization in atopic dermatitis.Allergol Int. 2022; 71: 265-277Crossref Scopus (19) Google Scholar, 11Garcovich S. Maurelli M. Gisondi P. Peris K. Yosipovitch G. Girolomoni G. Pruritus as a distinctive feature of type 2 inflammation.Vaccines (Basel). 2021; 9: 303Crossref PubMed Scopus (50) Google Scholar, 12Kim Y.J. Granstein R.D. Roles of calcitonin gene-related peptide in the skin, and other physiological and pathophysiological functions.Brain Behav Immun Health. 2021; 18100361PubMed Google Scholar, 13Wang F. Trier A.M. Li F. Kim S. Chen Z. Chai J.N. et al.A basophil-neuronal axis promotes itch.Cell. 2021; 184: 422-440.e17Abstract Full Text Full Text PDF PubMed Scopus (95) Google Scholar, 14Liu B. Tai Y. Achanta S. Kaelberer M.M. Caceres A.I. Shao X. et al.IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy.Proc Natl Acad Sci U S A. 2016; 113: E7572-E7579Crossref PubMed Scopus (179) Google Scholar, 15Wilson S.R. Thé L. Batia L.M. Beattie K. Katibah G.E. McClain S.P. et al.The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch.Cell. 2013; 155: 285-295Abstract Full Text Full Text PDF PubMed Scopus (676) Google Scholar, 16Trier A.M. Mack M.R. Fredman A. Tamari M. Ver Heul A.M. Zhao Y. et al.IL-33 signaling in sensory neurons promoted dry skin itch.J Allergy Clin Immunol. 2022; 149: 1473-1480Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 17Simpson E.L. Parnes J.R. She D. Crouch S. Rees W. Mo M. et al.Tezepelumab, an anti–thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial.J Am Acad Dermatol. 2019; 80: 1013-1021Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 18Oetjen L.K. Mack M.R. Feng J. Whelan T.M. Niu H. Guo C.J. et al.Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch.Cell. 2017; 171: 217-228.e13Abstract Full Text Full Text PDF PubMed Scopus (581) Google Scholar, 19Cevikbas F. Wang X. Akiyama A. Kempkes C. Savinko T. Antal A. et al.A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1.J Allergy Clin Immunol. 2014; 133: 448-460Abstract Full Text Full Text PDF PubMed Scopus (482) Google Scholar, 20Blauvelt A. de Bruin-Weller M. Gooderham M. Cather J.C. Weisman J. Pariser D. et al.Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomized, double-blinded, placebo-controlled, phase 3 trial.Lancet. 2017; 389: 2287-2303Abstract Full Text Full Text PDF PubMed Scopus (786) Google Scholar, 21Silverberg J.I. Simpson E.L. Ardeleanu M. Thaçi D. Barbarot S. Bagel J. et al.Dupilumab provides important clinical benefits to patients with atopic dermatitis who do not achieve clear or almost clear skin according to the Investigator's Global Assessment: a pooled analysis of data from two phase III trials.Br J Dermatol. 2019; 181: 80-87Crossref PubMed Scopus (39) Google Scholar, 22Simpson E.L. Bieber T. Guttman-Yassky E. Beck L.A. Blauvelt A. Cork M.J. et al.Two phase 3 trials of dupilumab versus placebo in atopic dermatitis.N Engl J Med. 2016; 375: 2335-2348Crossref PubMed Scopus (1254) Google Scholar, 23Thaçi D. Simpson E.L. Deleuran M. Kataoka Y. Chen Z. Gadkari A. et al.Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2).J Dermatol Sci. 2019; 94: 266-275Abstract Full Text Full Text PDF PubMed Google Scholar, 24Simpson E.L. Paller A.S. Siegfried E.C. Boguniewicz M. Sher L. Gooderham M.J. et al.Efficacy and safety of dupilumab in adolescents with uncontrolled moderate to severe atopic dermatitis: a phase 3 randomized clinical trial.JAMA Dermatol. 2020; 156: 44-56Crossref PubMed Scopus (254) Google Scholar, 25Paller A.S. Siegfried E.C. Thaçi D. Wollenberg A. Cork M.J. Arkwright P.D. et al.Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: a randomized, double-blinded, placebo-controlled phase 3 trial.J Am Acad Dermatol. 2020; 83: 1282-1293Abstract Full Text Full Text PDF PubMed Scopus (174) Google Scholar, 26Paller A.S. Simpson E.L. Siegfried E.C. Cork M.J. Wollenberg A. Arkwright P.D. et al.Dupilumab in children ages 6 months to younger than 6 years with uncontrolled atopic dermatitis: a randomised, double-blind, placebo-controlled phase 3 trial.Lancet. 2022; 400: 908-919Abstract Full Text Full Text PDF PubMed Google Scholar, 27Wollenberg A. Blauvelt A. Guttman-Yassky E. Worm M. Lynde C. Lacour J.P. et al.Tralokinumab for moderate-to-severe atopic dermatitis: results from two 52-week, randomized, double-blind, multicentre, placebo-controlled phase III trials (ECZTRA 1 and ECZTRA 2).Br J Dermatol. 2021; 184: 437-449Crossref PubMed Scopus (214) Google Scholar, 28Wollenberg A. Howell M.D. Guttman-Yassky E. Silverberg J.I. Kell C. Ranade K. et al.Treatment of atopic dermatitis with tralokinumab, an anti-IL-13 mAb.J. Allergy Clin. Immunol. 2019; 143: 135-141Abstract Full Text Full Text PDF PubMed Scopus (252) Google Scholar, 29Gutermuth J. Pink A.E. Worm M. Soldbro L. Bjerregård Øland C. Weidinger S. Tralokinumab plus topical corticosteroids in adults with severe atopic dermatitis and inadequate response to or intolerance of ciclosporin A: a placebo-controlled, randomized, phase III clinical trial (ECZTRA 7).Br J Dermatol. 2022; 186: 440-452Crossref PubMed Scopus (26) Google Scholar, 30Silverberg J.I. Toth D. Bieber T. Alexis A.F. Elewski B.E. Pink A.E. et al.Tralokinumab plus topical corticosteroids for the treatment of moderate-to-severe atopic dermatitis: results from the double-blind, randomized, multicentre, placebo-controlled phase III ECZTRA 3 trial.Br J Dermatol. 2021; 184: 450-463Crossref PubMed Scopus (133) Google Scholar, 31Simpson E.L. Carsten Flohr C. Eichenfield L.F. Bieber T. Sofen H. Taïeb A. et al.Efficacy and safety of lebrikizumab (an anti-IL-13 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by topical corticosteroids: a randomized, placebo-controlled phase II trial (TREBLE).J Am Acad Dermatol. 2018; 78: 863-871.e11Abstract Full Text Full Text PDF PubMed Scopus (239) Google Scholar, 32Guttman-Yassky E. Blauvelt A. Eichenfield L.F. Paller A.S. Armstrong A.W. Drew J. et al.Efficacy and safety of lebrikizumab, a high-affinity interleukin 13 inhibitor, in adults with moderate to severe atopic dermatitis. A phase 2b randomized clinical trial.JAMA Dermatol. 2020; 156: 411-420Crossref PubMed Scopus (0) Google Scholar, 33Silverberg J.I. Guttman-Yassky E. Thaçi D. Irvine A.D. Stein Gold L. Blauvelt A. et al.Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis.N Engl J Med. 2023; 388: 1080-1091Crossref PubMed Scopus (16) Google Scholar, 34Silverberg J.I. Pinter A. Pulka G. Poulin Y. Bouaziz J.D. Wollenberg A. et al.Phase 2B randomized study of nemolizumab in adults with moderate-to-severe atopic dermatitis and severe pruritus.J Allergy Clin Immunol. 2020; 145: 173-182Abstract Full Text Full Text PDF PubMed Scopus (159) Google Scholar, 35Kabashima K. Matsumura T. Komazaki H. Kawashima M. Nemolizumab JP01 and JP02 Study Group. Nemolizumab plus topical agents in patients with atopic dermatitis (AD) and moderate-to-severe pruritus provide improvement in pruritus and signs of AD for up to 68 weeks: results from two phase III, long-term studies.Br J Dermatol. 2022; 186: 642-651Crossref PubMed Scopus (0) Google Scholar, 36Ständer S. Yosipovitch G. Legat F.J. Lacour J.P. Paul C. Narbutt J. et al.Trial of nemolizumab in moderate-to-severe prurigo nodularis.N Engl J Med. 2020; 382: 706-716Crossref PubMed Scopus (144) Google Scholar, 37Kamata M. Tada Y. Optimal use of Jak inhibitors and biologics for atopic dermatitis on the basis of the current evidence.JID Innov. 2023; 3100195Abstract Full Text Full Text PDF Google Scholar, 38Bieber T. Paller A.S. Kabashima K. et al.Atopic dermatitis: pathomechanisms and lessons learned from novel systemic therapeutic options.JEADV. 2022; 36: 1432-1449Google Scholar, 39Lee K.P. Plante J. Korte J.E. Elston D.M. Oral Janus kinase inhibitors in the treatment of atopic dermatitis: A systematic review and meta-analysis.Skin Health Dis. 2023; 3: e133Crossref PubMed Scopus (0) Google Scholar, 40Rodriguez-Roy Y. Ficheux A.-S. Misery L. Brenaut Efficacy of topical and systemic treatments for atopic dermatitis on pruritus: A systematic literature review and meta-analysis.Front Med. 2022; 91079323Google Scholar, 41Huang I.-H. Chung W.-H. Wu P.-C. Chen C.-B. JAK-STAT signaling pathway in the pathogenesis of atopic dermatitis: An updated review.Front Immunol. 2022; 131068260Crossref Scopus (12) Google Scholar, 42Haas S. Capellino S. Phan N.Q. Böhm M. Luger T.A. Straub R.H. et al.Low density of sympathetic nerve fibers relative to substance P-positive nerve fibers in lesional skin of chronic pruritus and prurigo nodularis.J Dermatol Sci. 2010; 58: 193-197Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar, 43Liang Y. Jacobi H.H. Reimert C.M. Haak-Frendscho M. Marcusson J.A. Johansson O. CGRP-immunoreactive nerves in prurigo nodularis—an exploration of neurogenic inflammation.J Cutan Pathol. 2000; 27: 359-366Crossref PubMed Scopus (62) Google Scholar, 44Williams K.A. Huang A.H. Belzberg M. Kwatra S.G. Prurigo nodularis: pathogenesis and management.J Am Acad Dermatol. 2020; 83: 1567-1575Abstract Full Text Full Text PDF PubMed Google Scholar, 45Molina F.A. Burrows N.P. Jones R.R. Terenghi G. Polak J.M. Increased sensory neuropeptides in nodular prurigo: a quantitative immunohistochemical analysis.Br J Dermatol. 1992; 127: 344-351Crossref PubMed Scopus (0) Google Scholar, 46Kabata H. Artis D. Neuro-immune crosstalk and allergic inflammation.J Clin Invest. 2019; 129: 1475-1482Crossref PubMed Scopus (88) Google Scholar, 47Teresiak-Mikołajczak E. Czarnecka-Operacz M. Jenerowicz D. Silny W. Neurogenic markers of the inflammatory process in atopic dermatitis: relation to the severity and pruritus.Postepy Dermatol Alergol. 2013; 30: 286-292Crossref PubMed Scopus (33) Google Scholar, 48Yang T.B. Kim B.S. Clinical Review: Pruritus in allergy and immunology.J Allergy Clin Immunol. 2019; 144: 353-360Abstract Full Text Full Text PDF PubMed Google Scholar, 49Hashimoto T. Nattkemper L.A. Kim H.S. et al.Itch intensity in prurigo nodularis is closely related to dermal interleukin-31, oncostatin M, IL-31 receptor alpha and oncostatin M receptor beta.Exp Dermatol. 2021; 30: 804-810Crossref PubMed Scopus (44) Google Scholar, 50Stott B. Lavender P. Lehmann S. Pennino D. Durham S. Schmidt-Weber C.B. Human IL-31 is induced by IL-4 and promotes Th2-driven inflammation.J Allergy Clin Immunol. 2013; 132: 446-454Abstract Full Text Full Text PDF PubMed Scopus (134) Google Scholar, 51Macdonald L.E. Karow M. Stevens S. Auerbach W. Poueymirou W.T. Jason Yasenchak J. et al.Precise and in situ genetic humanization of 6 Mb of mouse immunoglobulin genes.Proc Natl Acad Sci U S A. 2014; 111: 5147-5152Crossref PubMed Scopus (237) Google Scholar, 52Ständer S. Yosipovitch G. Lacour J.P. Legat F.J. Paul C. Reich A. et al.Nemolizumab efficacy in prurigo nodularis: onset of action on itch and sleep disturbances.J Eur Acad Dermatol Venereol. 2022; 36: 1820-1825Crossref PubMed Scopus (0) Google Scholar, 53Fryer A.D. Stein L.H. Nie Z. Curtis D.E. Evans C.M. Hodgson S.T. et al.Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction.J Clin Invest. 2006; 116: 228-236Crossref PubMed Scopus (122) Google Scholar, 54Grunig G. Warnock M. Wakil A.E. Venkayya R. Brombacher F. Rennick D.M. et al.Requirement for IL-13 independently of IL-4 in experimental asthma.Science. 1998; 282: 2261-2263Crossref PubMed Scopus (1748) Google Scholar, 55Wills-Karp J. Luyimbazi K.J. Xu X. Schofield B. Neben T.Y. Karp C.L. et al.Interleukin-13: central mediator of allergic asthma.Science. 1998; 282: 2258-2261Crossref PubMed Scopus (2410) Google Scholar, 56Manson M.L. Jesper Säfholm J. James A. Johnsson A. Bergman P. Al-Ameri M. et al.IL-13 and IL-4, but not IL-5 nor IL-17A, induce hyperresponsiveness in isolated human small airways.J Allergy Clin Immunol. 2020; 145: 808-817Abstract Full Text Full Text PDF PubMed Scopus (66) Google Scholar, 57Brightling C.E. Bradding P. Symon F.A. Holgate S.T. Wardlaw A.J. Pavord I.D. Mast-cell infiltration of airway smooth muscle in asthma.N Engl J Med. 2002; 346: 1699-1705Crossref PubMed Scopus (1079) Google Scholar, 58Weigand L.A. Myers A.C. Meeker S. Undem B.J. Mast cell-cholinergic nerve interaction in mouse airways.J Physiol. 2009; 587: 3355-3362Crossref PubMed Scopus (55) Google Scholar, 59Klose C.S.N. Mahlakõiv T. Moeller J.B. Rankin L.C. Flamar A.L. Kabata H. et al.The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation.Nature. 2017; 549: 282-286Crossref PubMed Scopus (350) Google Scholar, 60Cardoso V. Chesné J. Ribeiro H. García-Cassani B. Carvalho T. Bouchery T. et al.Neuronal regulation of type 2 innate lymphoid cells via neuromedin U.Nature. 2017; 549: 277-281Crossref PubMed Scopus (368) Google Scholar, 61Perner C. Flayer C.H. Zhu X. Aderhold P.A. Dewan Z.N.A. Voisin T. et al.Substance P release by sensory neurons triggers dendritic cell migration and initiates the type-2 immune response to allergens.Immunity. 2020; 53: 1063-1077Abstract Full Text Full Text PDF PubMed Google Scholar, 62Moriyama S. Brestoff J.R. Flamar A.L. Moeller J.B. Klose C.S.N. Rankin L.C. et al.β2-adrenergic receptor-mediated negative regulation of group 2 innate lymphoid cell responses.Science. 2018; 359: 1056-1061Crossref PubMed Scopus (236) Google Scholar, 63Sui P. Wiesner D.L. Xu J. Zhang Y. Lee J. Van Dyken S. et al.Pulmonary neuroendocrine cells amplify allergic asthma responses.Science. 2018; 360eaan8546Crossref PubMed Scopus (228) Google Scholar, 64Hara Y. Jha M.K. Mattoo H. Nash S. Khan A. Orengo J. et al.Interleukin 4 directly activates olfactory neurons and induces loss of smell in mice.J Allergy Clin Immunol. 2023; 151: AB128Abstract Full Text Full Text PDF Google Scholar, 65Rouyar A. Classe M. Gorski R. Bock M.D. Le-Guern J. Roche S. et al.Type 2/Th2-driven inflammation impairs olfactory sensory neurogenesis in mouse chronic rhinosinusitis model.Allergy. 2019; 74: 549-559Crossref PubMed Scopus (14) Google Scholar, 66Backaert W. Steelant B. Hellings P.W. Talavera K. Van Gerven L. A TRiP through the roles of transient receptor potential cation channels in type 2 upper airway inflammation.Curr Allergy Asthma Rep. 2021; 21: 20Crossref PubMed Scopus (0) Google Scholar, 67Li F. Jiang H. Shen X. et al.Sneezing reflex is mediated by a peptidergic pathway from nose to brainstem.Cell. 2021; 184: 3762-3773Abstract Full Text Full Text PDF PubMed Scopus (23) Google Scholar, 68Samivel R. Kim D.W. Son H.R. et al.The role of TRPV1 in the CD4+ T cell-mediated inflammatory response of allergic rhinitis.Oncotarget. 2015; 7: 148-160Crossref Google Scholar, 69Yu M. Chang C. Undem B.J. Yu S. Capsaicin-sensitive vagal afferent nerve-mediated interoceptive signals in the esophagus.Molecules. 2021; 26: 3929Crossref Scopus (3) Google Scholar, 70O'Shea K.M. Aceves S.S. Dellon E.S. Pathophysiology of eosinophilic esophagitis.Gastroenterology. 2018; 154: 333-345Abstract Full Text Full Text PDF PubMed Google Scholar, 71Akiho H. Ihara E. Motomura Y. Nakamura K. Cytokine-induced alterations of gastrointestinal motility in gastrointestinal disorders.World J Gastrointest Pathophysiol. 2011; 2: 72-81Crossref PubMed Google Scholar, 72Hu Y. Liu Z. Yu X. et al.Increased acid responsiveness in vagal sensory neurons in a guinea pig model of eosinophilic esophagitis.Am J Physiol Gastrointest Liver Physiol. 2014; 307: G149-G157Crossref Scopus (21) Google Scholar, 73Zhang S. Shoda T. Aceves S.S. Arva N.C. Chehade M. Collins M.H. et al.Mast cell-pain connection in eosinophilic esophagitis.Allergy. 2022; 77: 1895-1899Crossref PubMed Scopus (8) Google Scholar).Table INeuroimmune interactions affecting symptoms in AD, PN, asthma, CRSwNP, and EoEConditionSymptomsNeuroimmune interactionsType 2 cytokine profileADPruritus•Colocalization of neurons and immune cells7Kulka M. Sheen C.H. Tancowny B.P. Grammer L.C. Schleimer R.P. Neuropeptides activate human mast cell degranulation and chemokine production.Immunology. 2008; 123: 398-410Crossref PubMed Scopus (340) Google Scholar,8Liang Y. Marcusson J.A. Jacobi H.H. Haak-Frendscho M. Johansson O. Histamine-containing mast cells and their relationship to NGFr-immunoreactive nerves in prurigo nodularis: a reappraisal.J Cutan Pathol. 1998; 25: 189-198Crossref PubMed Scopus (49) Google Scholar•Type 2 cytokines and OSM promote pruritogen sensitization9Sonkoly E. Muller A. Lauerma A.I. Pivarcsi A. Soto H. Kemeny L. et al.IL-31: a new link between T cells and pruritus in atopic skin inflammation.J Allergy Clin Immunol. 2006; 117: 411-417Abstract Full Text Full Text PDF PubMed Scopus (759) Google Scholar•Neuropeptide release from sensory neurons induces proinflammatory cytokines and activates immune cells (eg, mast cells, basophils)7Kulka M. Sheen C.H. Tancowny B.P. Grammer L.C. Schleimer R.P. Neuropeptides activate human mast cell degranulation and chemokine production.Immunology. 2008; 123: 398-410Crossref PubMed Scopus (340) Google Scholar,8Liang Y. Marcusson J.A. Jacobi H.H. Haak-Frendscho M. Johansson O. Histamine-containing mast cells and their relationship to NGFr-immunoreactive nerves in prurigo nodularis: a reappraisal.J Cutan Pathol. 1998; 25: 189-198Crossref PubMed Scopus (49) Google Scholar,10Tominaga M. Takamori K. Peripheral itch sensitization in atopic dermatitis.Allergol Int. 2022; 71: 265-277Crossref Scopus (19) Google Scholar, 11Garcovich S. Maurelli M. Gisondi P. Peris K. Yosipovitch G. Girolomoni G. Pruritus as a distinctive feature of type 2 inflammation.Vaccines (Basel). 2021; 9: 303Crossref PubMed Scopus (50) Google Scholar, 12Kim Y.J. Granstein R.D. Roles of calcitonin gene-related peptide in the skin, and other physiological and pathophysiological functions.Brain Behav Immun Health. 2021; 18100361PubMed Google Scholar, 13Wang F. Trier A.M. Li F. Kim S. Chen Z. Chai J.N. et al.A basophil-neuronal axis promotes itch.Cell. 2021; 184: 422-440.e17Abstract Full Text Full Text PDF PubMed Scopus (95) Google Scholar•Scratching causes release of alarmins (eg, IL-33), which can act directly on sensory neurons9Sonkoly E. Muller A. Lauerma A.I. Pivarcsi A. Soto H. Kemeny L. et al.IL-31: a new link between T cells and pruritus in atopic skin inflammation.J Allergy Clin Immunol. 2006; 117: 411-417Abstract Full Text Full Text PDF PubMed Scopus (759) Google Scholar,11Garcovich S. Maurelli M. Gisondi P. Peris K. Yosipovitch G. Girolomoni G. Pruritus as a distinctive feature of type 2 inflammation.Vaccines (Basel). 2021; 9: 303Crossref PubMed Scopus (50) Google Scholar,14Liu B. Tai Y. Achanta S. Kaelberer M.M. Caceres A.I. Shao X. et al.IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy.Proc Natl Acad Sci U S A. 2016; 113: E7572-E7579Crossref PubMed Scopus (179) Google Scholar, 15Wilson S.R. Thé L. Batia L.M. Beattie K. Katibah G.E. McClain S.P. et al.The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch.Cell. 2013; 155: 285-295Abstract Full Text Full Text PDF PubMed Scopus (676) Google Scholar, 16Trier A.M. Mack M.R. Fredman A. Tamari M. Ver Heul A.M. Zhao Y. et al.IL-33 signaling in sensory neurons promoted dry skin itch.J Allergy Clin Immunol. 2022; 149: 1473-1480Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 17Simpson E.L. Parnes J.R. She D. Crouch S. Rees W. Mo M. et al.Tezepelumab, an anti–thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial.J Am Acad Dermatol. 2019; 80: 1013-1021Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar•Some sensory neurons express receptors for IL-4, IL-13, IL-31, TRPA1, TRPV118Oetjen L.K. Mack M.R. Feng J. Whelan T.M. Niu H. Guo C.J. et al.Sensory neurons co-opt classical immune signaling pathways to mediate chronic itch.Cell. 2017; 171: 217-228.e13Abstract Full Text Full Text PDF PubMed Scopus (581) Google Scholar,19Cevikbas F. Wang X. Akiyama A. Kempkes C. Savinko T. Antal A. et al.A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: involvement of TRPV1 and TRPA1.J Allergy Clin Immunol. 2014; 133: 448-460Abstract Full Text Full Text PDF PubMed Scopus (482) Google Scholar•Reducing type 2 inflammation reduces itch20Blauvelt A. de Bruin-Weller M. Gooderham M. Cather J.C. Weisman J. Pariser D. et al.Long-term management of moderate-to-severe atopic dermatitis with dupilumab and concomitant topical corticosteroids (LIBERTY AD CHRONOS): a 1-year, randomized, double-blinded, placebo-controlled, phase 3 trial.Lancet. 2017; 389: 2287-2303Abstract Full Text Full Text PDF PubMed Scopus (786) Google Scholar, 21Silverberg J.I. Simpson E.L. Ardeleanu M. Thaçi D. Barbarot S. Bagel J. et al.Dupilumab provides important clinical benefits to patients with atopic dermatitis who do not achieve clear or almost clear skin according to the Investigator's Global Assessment: a pooled analysis of data from two phase III trials.Br J Dermatol. 2019; 181: 80-87Crossref PubMed Scopus (39) Google Scholar, 22Simpson E.L. Bieber T. Guttman-Yassky E. Beck L.A. Blauvelt A. Cork M.J. et al.Two phase 3 trials of dupilumab versus placebo in atopic dermatitis.N Engl J Med. 2016; 375: 2335-2348Crossref PubMed Scopus (1254) Google Scholar, 23Thaçi D. Simpson E.L. Deleuran M. Kataoka Y. Chen Z. Gadkari A. et al.Efficacy and safety of dupilumab monotherapy in adults with moderate-to-severe atopic dermatitis: a pooled analysis of two phase 3 randomized trials (LIBERTY AD SOLO 1 and LIBERTY AD SOLO 2).J Dermatol Sci. 2019; 94: 266-275Abstract Full Text Full Text PDF PubMed Google Scholar, 24Simpson E.L. Paller A.S. Siegfried E.C. Boguniewicz M. Sher L. Gooderham M.J. et al.Efficacy and safety of dupilumab in adolescents with uncontrolled moderate to severe atopic dermatitis: a phase 3 randomized clinical trial.JAMA Dermatol. 2020; 156: 44-56Crossref PubMed Scopus (254) Google Scholar, 25Paller A.S. Siegfried E.C. Thaçi D. Wollenberg A. Cork M.J. Arkwright P.D. et al.Efficacy and safety of dupilumab with concomitant topical corticosteroids in children 6 to 11 years old with severe atopic dermatitis: a randomized, double-blinded, placebo-controlled phase 3 trial.J Am Acad Dermatol. 2020; 83: 1282-1293Abstract Full Text Full Text PDF PubMed Scopus (174) Google Scholar, 26Paller A.S. Simpson E.L. Siegfried E.C. Cork M.J. Wollenberg A. Arkwright P.D. et al.Dupilumab in children ages 6 months to younger than 6 years with uncontrolled atopic dermatitis: a randomised, double-blind, placebo-controlled phase 3 trial.Lancet. 2022; 400: 908-919Abstract Full Text Full Text PDF PubMed Google Scholar, 27Wollenberg A. Blauvelt A. Guttman-Yassky E. Worm M. Lynde C. Lacour J.P. et al.Tralokinumab for moderate-to-severe atopic dermatitis: results from
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sector完成签到,获得积分0
4秒前
共享精神应助皇甫契采纳,获得10
8秒前
璇璇完成签到 ,获得积分10
10秒前
weng完成签到,获得积分10
13秒前
沉默洋葱完成签到,获得积分10
14秒前
勤劳小懒虫完成签到 ,获得积分10
14秒前
团团完成签到 ,获得积分10
16秒前
纸芯完成签到 ,获得积分10
17秒前
大猪完成签到 ,获得积分10
17秒前
小石榴的爸爸完成签到 ,获得积分10
17秒前
方方完成签到 ,获得积分10
19秒前
小石榴爸爸完成签到 ,获得积分10
21秒前
关中人完成签到,获得积分10
23秒前
26秒前
皇甫契发布了新的文献求助10
31秒前
研友完成签到 ,获得积分10
32秒前
小李完成签到 ,获得积分10
33秒前
我爱康康文献完成签到 ,获得积分10
34秒前
37秒前
欣喜的代容完成签到 ,获得积分10
39秒前
开放访天完成签到 ,获得积分10
46秒前
mojomars完成签到,获得积分10
50秒前
文瑄完成签到 ,获得积分10
53秒前
HY完成签到,获得积分10
54秒前
Axs完成签到,获得积分10
1分钟前
所所应助科研通管家采纳,获得30
1分钟前
infer1024完成签到 ,获得积分10
1分钟前
似乎一场梦完成签到 ,获得积分10
1分钟前
愉快道之完成签到 ,获得积分10
1分钟前
1分钟前
笨笨十三完成签到 ,获得积分10
1分钟前
雍元正完成签到 ,获得积分10
1分钟前
席谷兰完成签到 ,获得积分10
1分钟前
高高的天亦完成签到 ,获得积分10
1分钟前
xu完成签到 ,获得积分10
1分钟前
earthai完成签到,获得积分10
1分钟前
1分钟前
btcat完成签到,获得积分10
1分钟前
有魅力荟发布了新的文献求助10
1分钟前
666星爷完成签到,获得积分10
1分钟前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434856
求助须知:如何正确求助?哪些是违规求助? 3032180
关于积分的说明 8944432
捐赠科研通 2720123
什么是DOI,文献DOI怎么找? 1492192
科研通“疑难数据库(出版商)”最低求助积分说明 689725
邀请新用户注册赠送积分活动 685862