Comparison of classical and ab initio simulations of hydronium and aqueous proton transfer

氢铵 化学 质子 氢键 从头算 价键理论 化学物理 分子 分子动力学 水溶液 计算化学 热力学 分子几何学 接受者 物理化学 物理 量子力学 分子轨道 有机化学
作者
Manuela Maurer,Themis Lazaridis
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:159 (13)
标识
DOI:10.1063/5.0166596
摘要

Proton transport in aqueous systems occurs by making and breaking covalent bonds, a process that classical force fields cannot reproduce. Various attempts have been made to remedy this deficiency, by valence bond theory or instantaneous proton transfers, but the ability of such methods to provide a realistic picture of this fundamental process has not been fully evaluated. Here we compare an ab initio molecular dynamics (AIMD) simulation of an excess proton in water to a simulation of a classical H3O+ in TIP3P water. The energy gap upon instantaneous proton transfer from H3O+ to an acceptor water molecule is much higher in the classical simulation than in the AIMD configurations evaluated with the same classical potential. The origins of this discrepancy are identified by comparing the solvent structures around the excess proton in the two systems. One major structural difference is in the tilt angle of the water molecules that accept an hydrogen bond from H3O+. The lack of lone pairs in TIP3P produces a tilt angle that is too large and generates an unfavorable geometry after instantaneous proton transfer. This problem can be alleviated by the use of TIP5P, which gives a tilt angle much closer to the AIMD result. Another important factor that raises the energy gap is the different optimal distance in water-water vs H3O+-water H-bonds. In AIMD the acceptor is gradually polarized and takes a hydronium-like configuration even before proton transfer actually happens. Ways to remedy some of these problems in classical simulations are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
烟花应助hihi采纳,获得10
1秒前
在水一方应助jianglu采纳,获得10
1秒前
小伍同学完成签到,获得积分10
1秒前
所所应助新八采纳,获得10
1秒前
LiuHK发布了新的文献求助60
2秒前
ERIS完成签到,获得积分10
2秒前
2秒前
ding应助闻尔采纳,获得10
2秒前
科学家发布了新的文献求助10
2秒前
小水发布了新的文献求助10
2秒前
高高嘉懿发布了新的文献求助10
3秒前
清秋十三发布了新的文献求助30
3秒前
烟花应助鲤鱼晓瑶采纳,获得10
3秒前
李希有发布了新的文献求助10
4秒前
万能图书馆应助ALY12345采纳,获得10
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
能干的语芙发布了新的文献求助200
6秒前
6秒前
哼哼唧唧发布了新的文献求助10
7秒前
7秒前
小伍同学发布了新的文献求助10
7秒前
曲沛萍发布了新的文献求助10
7秒前
苏书白应助咿呀采纳,获得10
7秒前
7秒前
单薄树叶完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
Owen应助xcf采纳,获得10
9秒前
小水完成签到,获得积分10
9秒前
9秒前
安德鲁森完成签到 ,获得积分10
10秒前
爱静静应助瘦瘦的睫毛膏采纳,获得10
10秒前
10秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148856
求助须知:如何正确求助?哪些是违规求助? 2799869
关于积分的说明 7837518
捐赠科研通 2457441
什么是DOI,文献DOI怎么找? 1307837
科研通“疑难数据库(出版商)”最低求助积分说明 628280
版权声明 601685