HiFuse: Hierarchical multi-scale feature fusion network for medical image classification

计算机科学 模式识别(心理学) 人工智能 特征(语言学) 核(代数) 数学 哲学 语言学 组合数学
作者
Xiangzuo Huo,Gang Sun,Shengwei Tian,Yan Wang,Long Yu,Jun Long,Wendong Zhang,Aolun Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:87: 105534-105534 被引量:48
标识
DOI:10.1016/j.bspc.2023.105534
摘要

Effective fusion of global and local multi-scale features is crucial for medical image classification. Medical images have many noisy, scattered features, intra-class variations, and inter-class similarities. Many studies have shown that global and local features are helpful to reduce noise interference in medical images. It is difficult to capture the global features of images due to the fixed size of the receptive domain of the convolution kernel. Although the self-attention-based Transformer can model long-range dependencies, it has high computational complexity and lacks local inductive bias. In this paper, we propose a three-branch hierarchical multi-scale feature fusion network structure termed as HiFuse, which can fuse multi-scale global and local features without destroying the respective modeling, thus improving the classification accuracy of various medical images. There are two key characteristics: (i) a parallel hierarchical structure consisting of global and local feature blocks; (ii) an adaptive hierarchical feature fusion block (HFF block) and inverted residual multi-layer perceptron(IRMLP). The advantage of this network structure lies in that the resulting representation is semantically richer and the local features and global representations can be effectively extracted at different semantic scales. Our proposed model's ACC and F1 values reached 85.85% and 75.32% on the ISIC2018 dataset, 86.12% and 86.13% on the Kvasir dataset, 76.88% and 76.31% on the Covid-19 dataset, 92.31% and 88.81% on the esophageal cancer pathology dataset. The HiFuse model performs the best compared to other advanced models. Our code is open source and available from https://github.com/huoxiangzuo/HiFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jin发布了新的文献求助10
刚刚
1秒前
超帅慕晴发布了新的文献求助10
1秒前
胡蝶完成签到 ,获得积分10
1秒前
DENIM发布了新的文献求助20
1秒前
1秒前
科研通AI2S应助zj采纳,获得10
2秒前
科研通AI2S应助zj采纳,获得10
2秒前
2秒前
格子发布了新的文献求助10
3秒前
内向的焦完成签到,获得积分10
5秒前
7秒前
7秒前
7秒前
chen发布了新的文献求助30
7秒前
9秒前
旭天帝发布了新的文献求助10
10秒前
Betty关注了科研通微信公众号
10秒前
11秒前
abel发布了新的文献求助10
11秒前
着急的语海完成签到,获得积分10
11秒前
12秒前
wanci应助朱由校采纳,获得10
13秒前
哈哈哈哈哈哈完成签到 ,获得积分10
14秒前
幽默孤容发布了新的文献求助30
14秒前
FashionBoy应助湫89757采纳,获得10
15秒前
15秒前
16秒前
17秒前
大个应助cc采纳,获得10
17秒前
17秒前
logan发布了新的文献求助10
18秒前
chen完成签到,获得积分20
18秒前
Akim应助sun采纳,获得10
19秒前
可爱的函函应助nana采纳,获得30
19秒前
19秒前
旭天帝完成签到,获得积分20
20秒前
勋的小yy完成签到,获得积分10
21秒前
21秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170629
求助须知:如何正确求助?哪些是违规求助? 2821693
关于积分的说明 7936030
捐赠科研通 2482134
什么是DOI,文献DOI怎么找? 1322290
科研通“疑难数据库(出版商)”最低求助积分说明 633607
版权声明 602608