Experimental and numerical study on the influence of deterioration on the mechanical properties of graded gravel fillers during vibratory compaction

压实 材料科学 磨损(机械) 复合材料 粒子(生态学) 压缩(物理) 刚度 各向同性 岩土工程 地质学 海洋学 物理 量子力学
作者
Kang Xie,Xiaobin Chen,Taifeng Li,Xian-pu Xiao,Lubo Tang,Y. Wang
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:404: 133153-133153 被引量:4
标识
DOI:10.1016/j.conbuildmat.2023.133153
摘要

The research gap on the deterioration characteristics of graded gravel fillers during vibratory compaction has resulted in challenges in determining the optimal vibratory time for gravel fillers. In this paper, based on the self-developed compaction instrument, the critical vibratory time (Tlp) corresponding to the inflection point of compaction mechanical was proposed to characterize the deterioration state. Then, the deteriorated-induced evolution of gravel filler based on CT image are investigated. The CT test results show that when the vibratory time exceeds Tlp, the overall shape of the coarse particle remains unchanged, but their surface corners gradually undergo abrasion crushing. Next, a novel geometric modeling method is developed to simulate coarse particles with different abrasion levels by adjusting the parameter N, and as N increases, the abrasion levels of coarse particles increase. Finally, a series of compression tests are conducted with different abrasion levels of coarse particles via DEM to explore the mechanism of mechanical properties deterioration. The numerical results show that increasing N reduces both the peak strength and residual strength of the specimens, indicating decreased isotropy of contact and tangential contact force. The specimens with higher abrasion levels limit strong force chain formation, reducing the contribution of fine particles and increasing particle rotation. This study makes a significant contribution to the field of vibratory compaction quality control by providing a viable approach for a comprehensive investigation of vibratory compaction deterioration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助自然采纳,获得10
1秒前
伞兵龙完成签到,获得积分10
1秒前
1秒前
西安小小朱完成签到,获得积分10
1秒前
1秒前
2秒前
小二郎应助打工人章鱼哥采纳,获得10
2秒前
优雅的琳发布了新的文献求助10
2秒前
Niar完成签到 ,获得积分10
2秒前
2秒前
3秒前
shuimo521发布了新的文献求助10
3秒前
脑洞疼应助眯眯眼的老鼠采纳,获得10
3秒前
所所应助小离采纳,获得10
3秒前
我是老大应助杨天水采纳,获得10
3秒前
woodheart完成签到,获得积分10
4秒前
4秒前
JamesPei应助miaoww采纳,获得10
4秒前
王王完成签到,获得积分10
4秒前
Evelyn完成签到,获得积分10
4秒前
cxt1346完成签到 ,获得积分10
4秒前
bkagyin应助孙一雯采纳,获得30
5秒前
顺心迎南完成签到,获得积分20
5秒前
Emma完成签到,获得积分10
5秒前
CodeCraft应助微笑鹤采纳,获得11
6秒前
6秒前
天青色等烟雨完成签到 ,获得积分10
6秒前
坚强亦丝应助hziyu采纳,获得10
6秒前
tanhaili完成签到 ,获得积分10
6秒前
乐小佳完成签到,获得积分10
6秒前
yyyrrr完成签到,获得积分10
7秒前
7秒前
7秒前
李健应助hu970采纳,获得10
7秒前
JamesPei应助守护星星采纳,获得10
8秒前
kingwill应助科研小民工采纳,获得20
8秒前
9秒前
小胖子发布了新的文献求助10
9秒前
9秒前
思源应助虚幻镜子采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672