DD-HGNN$^+$: Drug-Disease Association Prediction Via General Hypergraph Neural Network With Hierarchical Contrastive Learning and Cross Attention Learning

计算机科学 人工智能 人工神经网络 联想(心理学) 机器学习 深度学习 交叉验证 自然语言处理 模式识别(心理学) 心理学 心理治疗师
作者
Z M Jin,Xiao Zheng,Hua Zhou,Chuanyi Ji,Sen Xiang,Chang Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2025.3542784
摘要

The research on identifying drug-disease associations (DDAs) is widely used in scenarios such as drug development, clinical decision-making, and drug repurposing, holding significant biological and medical significance. Existing methods for drug-disease association prediction have achieved decent performance, they primarily rely on simplistic drug-disease association graphs or similarity graphs. These methods often struggle to capture the high-order correlations of complex multimodal data, limiting their ability to handle the complexity of data associations effectively. In addition, real drug-disease associations are highly sparse, posing a significant challenge to prediction accuracy. To tackle these issues, we propose a general hypergraph neural network framework for drug-disease association prediction based on hierarchical contrastive learning and cross-attention learning. It leverages hypergraph neural networks to learn representations of drugs and diseases carrying high-order correlations and strengthens representation quality using interactive attention learning and hierarchical contrastive learning. Meanwhile, the -weighted loss function is utilized to adapt to the high sparsity property of real drug-disease associations during model training and improve prediction performance. Extensive experiments demonstrate that DD-HGNN surpasses other state-of-the-art methods in predicting drug-disease associations and further validation through case studies on Leukemia and Colorectal Neoplasms underscores its reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hym完成签到,获得积分10
刚刚
勺子爱西瓜完成签到,获得积分10
刚刚
所所应助如来采纳,获得10
1秒前
机器猫应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得30
1秒前
Tim完成签到,获得积分10
2秒前
ding应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
萌新完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得20
2秒前
Nicole完成签到 ,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
对苏完成签到,获得积分10
2秒前
哼哼发布了新的文献求助10
3秒前
Ava应助蜡笔小鑫采纳,获得10
3秒前
None完成签到,获得积分10
3秒前
17发布了新的文献求助10
3秒前
南城完成签到 ,获得积分10
3秒前
风淡了完成签到,获得积分10
4秒前
mysci完成签到,获得积分10
4秒前
艾科研完成签到,获得积分10
4秒前
FOCUS完成签到 ,获得积分10
4秒前
温柔樱桃发布了新的文献求助10
5秒前
朴素的书琴完成签到,获得积分10
5秒前
么么叽完成签到,获得积分10
5秒前
所所应助希柚采纳,获得10
5秒前
1234完成签到,获得积分10
6秒前
临床医学研究中心完成签到,获得积分10
6秒前
友好凌柏完成签到 ,获得积分10
6秒前
超级的千青完成签到 ,获得积分10
6秒前
秀丽绿真完成签到,获得积分10
6秒前
聪慧咖啡豆完成签到,获得积分10
7秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729319
求助须知:如何正确求助?哪些是违规求助? 3274482
关于积分的说明 9985861
捐赠科研通 2989636
什么是DOI,文献DOI怎么找? 1640698
邀请新用户注册赠送积分活动 779303
科研通“疑难数据库(出版商)”最低求助积分说明 748179