Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” opportunities

可穿戴计算机 汗水 多路复用 计算机科学 生物标志物 智能手表 可穿戴技术 生物标志物发现 人工智能 医学 嵌入式系统 生物信息学 生物 蛋白质组学 生物化学 基因 内科学
作者
Cornelia Felicia Greyling,Antra Ganguly,Abha Sardesai,Nathan Kodjo Mintah Churcher,Kai‐Chun Lin,Sriram Muthukumar,Shalini Prasad
出处
期刊:Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology [Wiley]
卷期号:16 (1) 被引量:10
标识
DOI:10.1002/wnan.1912
摘要

Abstract Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat‐based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real‐time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra‐low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat‐based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄丹寒发布了新的文献求助10
1秒前
1秒前
狸花小喵完成签到,获得积分10
2秒前
材料打工人完成签到,获得积分10
3秒前
5秒前
dropwater完成签到,获得积分10
5秒前
5秒前
6秒前
奇Qi发布了新的文献求助10
6秒前
曹志毅完成签到 ,获得积分10
8秒前
科研通AI2S应助一二三四五采纳,获得10
8秒前
笑点低白秋完成签到,获得积分10
9秒前
quandian完成签到,获得积分10
9秒前
LShi发布了新的文献求助10
10秒前
上进生发布了新的文献求助10
10秒前
10秒前
maxSpr完成签到 ,获得积分10
10秒前
AVA发布了新的文献求助10
12秒前
13秒前
香蕉觅云应助狸花小喵采纳,获得10
15秒前
15秒前
15秒前
15秒前
他化自在天完成签到,获得积分10
16秒前
Wanglh发布了新的文献求助10
17秒前
18秒前
酷波er应助AVA采纳,获得10
20秒前
简Moild发布了新的文献求助30
20秒前
21秒前
QIANLI完成签到,获得积分10
21秒前
传奇3应助cctoday采纳,获得10
21秒前
香草山完成签到 ,获得积分10
22秒前
tsw发布了新的文献求助10
22秒前
桐桐应助学学采纳,获得10
24秒前
紫陌完成签到 ,获得积分10
25秒前
凄凉山谷的风完成签到,获得积分10
26秒前
豆乳发布了新的文献求助10
26秒前
27秒前
bill关注了科研通微信公众号
28秒前
lldbc发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796565
关于积分的说明 7820588
捐赠科研通 2452958
什么是DOI,文献DOI怎么找? 1305288
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464