Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” opportunities

可穿戴计算机 汗水 多路复用 计算机科学 生物标志物 智能手表 可穿戴技术 生物标志物发现 人工智能 医学 嵌入式系统 生物信息学 生物 蛋白质组学 生物化学 基因 内科学
作者
Cornelia Felicia Greyling,Antra Ganguly,Abha Sardesai,Nathan Kodjo Mintah Churcher,Kai‐Chun Lin,Sriram Muthukumar,Shalini Prasad
出处
期刊:Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology [Wiley]
卷期号:16 (1) 被引量:15
标识
DOI:10.1002/wnan.1912
摘要

Abstract Growing interest over recent years in personalized health monitoring coupled with the skyrocketing popularity of wearable smart devices has led to the increased relevance of wearable sweat‐based sensors for biomarker detection. From optimizing workouts to risk management of cardiovascular diseases and monitoring prediabetes, the ability of sweat sensors to continuously and noninvasively measure biomarkers in real‐time has a wide range of applications. Conventional sweat sensors utilize external stimulation of sweat glands to obtain samples, however; this stimulation influences the expression profile of the biomarkers and reduces the accuracy of the detection method. To address this limitation, our laboratory pioneered the development of the passive sweat sensor subfield, which allowed for our progress in developing a sweat chemistry panel. Passive sweat sensors utilize nanoporous structures to confine and detect biomarkers in ultra‐low sweat volumes. The ability of passive sweat sensors to use smaller samples than conventional sensors enable users with sedentary lifestyles who perspire less to benefit from sweat sensor technology not previously afforded to them. Herein, the mechanisms and strategies of current sweat sensors are summarized with an emphasis on the emerging subfield of passive sweat‐based diagnostics. Prospects for this technology include discovering new biomarkers expressed in sweat and expanding the list of relevant detectable biomarkers. Moreover, the accuracy of biomarker detection can be enhanced with machine learning using prediction algorithms trained on clinical data. Applying this machine learning in conjunction with multiplex biomarker detection will allow for a more holistic approach to trend predictions. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Biosensing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助kb采纳,获得10
1秒前
一夜很静完成签到,获得积分0
1秒前
2秒前
ohyeah8888应助Rjy采纳,获得20
2秒前
李健应助佳丽采纳,获得10
2秒前
环球创新完成签到,获得积分10
3秒前
腼腆的曼荷应助anny2022采纳,获得10
3秒前
小二郎应助虚幻的城采纳,获得10
4秒前
liangliang发布了新的文献求助10
4秒前
所所应助海韵_Tony采纳,获得10
4秒前
刘玲发布了新的文献求助10
5秒前
bkagyin应助随便采纳,获得10
6秒前
杨傲多完成签到,获得积分10
6秒前
糖豆豆吃豆豆完成签到,获得积分10
7秒前
8秒前
乐乐应助shirely采纳,获得10
8秒前
9秒前
乐乐发布了新的文献求助10
9秒前
9秒前
四月128完成签到 ,获得积分10
10秒前
佳丽完成签到,获得积分10
10秒前
汪洋发布了新的文献求助10
10秒前
英俊的铭应助liangliang采纳,获得10
12秒前
12秒前
rrr发布了新的文献求助10
12秒前
caohuijun完成签到,获得积分10
13秒前
寒冷的冬瓜完成签到,获得积分10
13秒前
淡淡de橙子完成签到,获得积分10
13秒前
14秒前
猪猪hero发布了新的文献求助10
14秒前
科研通AI5应助耶耶采纳,获得10
14秒前
14秒前
15秒前
15秒前
16秒前
王科发布了新的文献求助30
16秒前
16秒前
17秒前
lieven发布了新的文献求助10
17秒前
lyn完成签到 ,获得积分10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747832
求助须知:如何正确求助?哪些是违规求助? 3290686
关于积分的说明 10070441
捐赠科研通 3006585
什么是DOI,文献DOI怎么找? 1651216
邀请新用户注册赠送积分活动 786271
科研通“疑难数据库(出版商)”最低求助积分说明 751591