Data-driven hospitals staff and resources allocation using agent-based simulation and deep reinforcement learning

计算机科学 强化学习 任务(项目管理) 资源配置 人工智能 医疗保健 资源(消歧) 运筹学 机器学习 计算机网络 经济增长 工程类 经济 管理
作者
Teddy Lazebnik
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:126: 106783-106783 被引量:13
标识
DOI:10.1016/j.engappai.2023.106783
摘要

Hospital staff and resources allocation (HSRA) is a critical challenge in healthcare systems, as it involves balancing the demands of patients, the availability of resources, and the need to provide high-quality health in resource-bounded settings. Traditional approaches to HSRA have relied on manual planning and ad-hoc adjustments, which can be time-consuming and usually lead to sub-optimal outcomes. Recent studies show that machine learning solutions are able to produce better HSRA results compared to manual planning. However, these outcomes usually focused on a single hospital and objective. In this paper, we solve the HSRA task using a novel agent-based simulation with a deep reinforcement learning agent. We used real-world data to generate a wide range of synthetic instances that were used to train the HSRA agent. Our results show that the proposed model is able to achieve better outcomes in terms of patient treatment success and cost-effectiveness compared to previous resource allocation algorithms. We show that different planning horizons obtain similar performance in handling anomalies. In addition, we show a second-order polynomial connection between the patient treatment success and both the hospital's initial budget and funding over time. These results suggest that our approach has the potential to improve the efficiency and effectiveness of HSRA in healthcare systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xsad发布了新的文献求助10
1秒前
1秒前
朴实山兰发布了新的文献求助10
1秒前
自由香魔完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Woshinidie发布了新的文献求助10
2秒前
3秒前
科研小白完成签到,获得积分10
4秒前
英姑应助明理小霸王采纳,获得10
4秒前
安安爱阎魔完成签到,获得积分10
5秒前
fy发布了新的文献求助20
6秒前
6秒前
majf发布了新的文献求助10
6秒前
高兴采文发布了新的文献求助10
6秒前
panzhongjie完成签到,获得积分10
6秒前
Mr.Su完成签到 ,获得积分10
6秒前
Jasper应助超帅蓝血采纳,获得10
6秒前
大个应助manzhouwang采纳,获得10
6秒前
6秒前
6秒前
凌擎宇发布了新的文献求助10
6秒前
7秒前
冰糖发布了新的文献求助10
7秒前
嘻嘻嘻完成签到,获得积分10
7秒前
科研通AI2S应助JUGG采纳,获得10
8秒前
YuanLeiZhang完成签到,获得积分10
9秒前
OKOK应助列子采纳,获得20
9秒前
熊四是誰完成签到,获得积分10
9秒前
yznfly应助开朗的心情采纳,获得30
9秒前
CipherSage应助开朗的心情采纳,获得10
9秒前
明理小霸王完成签到,获得积分20
10秒前
神明发布了新的文献求助10
11秒前
11秒前
大个应助蛋宝采纳,获得10
11秒前
11秒前
12秒前
12秒前
gyhhl完成签到,获得积分10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960796
求助须知:如何正确求助?哪些是违规求助? 3506987
关于积分的说明 11133209
捐赠科研通 3239307
什么是DOI,文献DOI怎么找? 1790107
邀请新用户注册赠送积分活动 872145
科研通“疑难数据库(出版商)”最低求助积分说明 803149