Action Recognition From a Single Coded Image

计算机科学 人工智能 卷积神经网络 编码器 深度学习 计算机视觉 边距(机器学习) 动作识别 模式识别(心理学) 任务(项目管理) 图像(数学) 图像传感器 机器学习 操作系统 经济 管理 班级(哲学)
作者
Sudhakar Kumawat,Tadashi Okawara,Michitaka Yoshida,Hajime Nagahara,Yasushi Yagi
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-14
标识
DOI:10.1109/tpami.2022.3196350
摘要

The unprecedented success of deep convolutional neural networks (CNN) on the task of video-based human action recognition assumes the availability of good resolution videos and resources to develop and deploy complex models. Unfortunately, certain budgetary and environmental constraints on the camera system and the recognition model may not be able to accommodate these assumptions and require reducing their complexity. To alleviate these issues, we introduce a deep sensing solution to directly recognize human actions from coded exposure images. Our deep sensing solution consists of a binary CNN-based encoder network that emulates the capturing of a coded exposure image of a dynamic scene using a coded exposure camera, followed by a 2D CNN for recognizing human action in the captured coded exposure image. Furthermore, we propose a novel knowledge distillation framework to jointly train the encoder and the action recognition model and show that the proposed training approach improves the action recognition accuracy by an absolute margin of 6.2%, 2.9%, and 7.9% on Something 2-v2, Kinetics-400, and UCF-101 datasets, respectively, in comparison to our previous approach. Finally, we built a prototype coded exposure camera using LCoS to validate the feasibility of our deep sensing solution. Our evaluation of the prototype camera show results that are consistent with the simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
路茉发布了新的文献求助10
2秒前
初心不变完成签到,获得积分20
2秒前
Xieyusen发布了新的文献求助10
3秒前
5秒前
福娃哇完成签到 ,获得积分10
6秒前
Owen应助猪猪hero采纳,获得10
7秒前
热心市民小红花应助wg言采纳,获得10
8秒前
深情安青应助飞飞采纳,获得10
8秒前
桐桐应助llll采纳,获得10
10秒前
10秒前
vina发布了新的文献求助30
10秒前
wu8577应助Lisisi采纳,获得30
11秒前
11秒前
可爱的函函应助俏皮诺言采纳,获得10
13秒前
半个桃子完成签到,获得积分20
13秒前
15秒前
15秒前
顺心磬完成签到 ,获得积分10
17秒前
18秒前
半个桃子发布了新的文献求助30
18秒前
19秒前
19秒前
娜娜发布了新的文献求助10
21秒前
猪猪hero发布了新的文献求助10
22秒前
王www发布了新的文献求助10
24秒前
25秒前
沙世平完成签到,获得积分10
25秒前
小h发布了新的文献求助20
27秒前
28秒前
29秒前
30秒前
飞飞发布了新的文献求助10
32秒前
34秒前
学术不难发布了新的文献求助30
34秒前
35秒前
丘比特应助猪猪hero采纳,获得10
35秒前
39秒前
41秒前
席河木鱼发布了新的文献求助10
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959210
求助须知:如何正确求助?哪些是违规求助? 3505538
关于积分的说明 11124306
捐赠科研通 3237248
什么是DOI,文献DOI怎么找? 1789010
邀请新用户注册赠送积分活动 871512
科研通“疑难数据库(出版商)”最低求助积分说明 802824