Leveraging genetic discoveries for sleep to determine causal relationships with common complex traits

孟德尔随机化 全基因组关联研究 疾病 混淆 睡眠(系统调用) 遗传关联 生物信息学 医学 生物 遗传变异 遗传学 单核苷酸多态性 基因型 病理 操作系统 基因 计算机科学
作者
Shilpa Sonti,Struan F.A. Grant
出处
期刊:Sleep [Oxford University Press]
卷期号:45 (10) 被引量:4
标识
DOI:10.1093/sleep/zsac180
摘要

Sleep occurs universally and is a biological necessity for human functioning. The consequences of diminished sleep quality impact physical and physiological systems such as neurological, cardiovascular, and metabolic processes. In fact, people impacted by common complex diseases experience a wide range of sleep disturbances. It is challenging to uncover the underlying molecular mechanisms responsible for decreased sleep quality in many disease systems owing to the lack of suitable sleep biomarkers. However, the discovery of a genetic component to sleep patterns has opened a new opportunity to examine and understand the involvement of sleep in many disease states. It is now possible to use major genomic resources and technologies to uncover genetic contributions to many common diseases. Large scale prospective studies such as the genome wide association studies (GWAS) have successfully revealed many robust genetic signals associated with sleep-related traits. With the discovery of these genetic variants, a major objective of the community has been to investigate whether sleep-related traits are associated with disease pathogenesis and other health complications. Mendelian Randomization (MR) represents an analytical method that leverages genetic loci as proxy indicators to establish causal effect between sleep traits and disease outcomes. Given such variants are randomly inherited at birth, confounding bias is eliminated with MR analysis, thus demonstrating evidence of causal relationships that can be used for drug development and to prioritize clinical trials. In this review, we outline the results of MR analyses performed to date on sleep traits in relation to a multitude of common complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fiona完成签到 ,获得积分10
刚刚
1秒前
1秒前
頑皮燕姿完成签到,获得积分10
1秒前
1秒前
2秒前
米儿完成签到,获得积分10
4秒前
5秒前
ding应助公冶君浩采纳,获得10
5秒前
6秒前
正直发箍完成签到,获得积分10
6秒前
小苏打完成签到,获得积分10
7秒前
8秒前
资诗蕊发布了新的文献求助10
8秒前
8秒前
10秒前
11秒前
嗯呢完成签到 ,获得积分10
11秒前
林沐完成签到 ,获得积分10
12秒前
hooke发布了新的文献求助10
12秒前
让我乔乔发布了新的文献求助10
12秒前
在水一方应助124cndhaP采纳,获得10
12秒前
九尾狐发布了新的文献求助10
12秒前
霸气水蜜桃完成签到,获得积分20
13秒前
淡然天问完成签到 ,获得积分10
14秒前
聪明飞飞完成签到,获得积分10
15秒前
欢呼的幻丝完成签到 ,获得积分10
15秒前
资诗蕊完成签到,获得积分10
16秒前
NexusExplorer应助屈初雪采纳,获得10
16秒前
坛子完成签到,获得积分10
18秒前
德德完成签到,获得积分10
19秒前
hooke完成签到,获得积分10
20秒前
跳跃的凝安关注了科研通微信公众号
21秒前
22秒前
豆豆完成签到 ,获得积分10
22秒前
24秒前
小二郎应助田野采纳,获得20
25秒前
26秒前
土豆丝发布了新的文献求助10
26秒前
Lucas应助如意歌曲采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148107
求助须知:如何正确求助?哪些是违规求助? 2799178
关于积分的说明 7833767
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307222
科研通“疑难数据库(出版商)”最低求助积分说明 628099
版权声明 601655