概率逻辑
欧几里德几何
水准点(测量)
生成模型
马尔科夫蒙特卡洛
马尔可夫链
计算机科学
图形
代表(政治)
歧管(流体力学)
统计物理学
算法
几何学
理论计算机科学
生成语法
数学
人工智能
机器学习
贝叶斯概率
物理
机械工程
工程类
政治
政治学
法学
地理
大地测量学
作者
Gregor N. C. Simm,José Miguel Hernández-Lobato
出处
期刊:Cornell University - arXiv
日期:2019-01-01
被引量:29
标识
DOI:10.48550/arxiv.1909.11459
摘要
Great computational effort is invested in generating equilibrium states for molecular systems using, for example, Markov chain Monte Carlo. We present a probabilistic model that generates statistically independent samples for molecules from their graph representations. Our model learns a low-dimensional manifold that preserves the geometry of local atomic neighborhoods through a principled learning representation that is based on Euclidean distance geometry. In a new benchmark for molecular conformation generation, we show experimentally that our generative model achieves state-of-the-art accuracy. Finally, we show how to use our model as a proposal distribution in an importance sampling scheme to compute molecular properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI