MSACon: Mining Spatial Attention-Based Contextual Information for Road Extraction

计算机科学 人工智能 分割 信息抽取 计算机视觉 特征提取 编码器 深度学习 空间分析 图像分割 人工神经网络 模式识别(心理学) 遥感 地理 操作系统
作者
Yingxiao Xu,Hao Chen,Chun Du,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-17 被引量:31
标识
DOI:10.1109/tgrs.2021.3073923
摘要

With the boost of deep learning methods, road extraction has been widely used in city planning and autonomous driving. However, it is very challenging to extract roads around the thorny occlusion areas, even in high-resolution remote sensing images. Existing approaches regard road extraction as an isolated binary segmentation task and ignore the surroundings’ contextual information in the optical image itself, especially the potential dependence implied between roads and buildings. To address the occlusion problem, we proposed a spatial attention-based road extraction neural network using contextual relation between roads and buildings named MSACon to extract the roads more precisely. First, we employed an existing building extraction method to predict buildings in the optical images. Second, we calculated the signed distance map (SDM) based on the building extraction results (which may be inaccurate) as ambiguous auxiliary information to infer the optical images’ potential roads. Due to the color, lines, and texture between the optical images and the SDM are distinct, we then designed the two-branch encoder to extract features and integrated the cross-domain features into the road decoder by a spatial attention-based fusion mechanism. Experiments demonstrate that the proposed method achieves superior performance than other state-of-the-art approaches even with ambiguous auxiliary information. Furthermore, MSACon shows obvious advantages in finding inconspicuous roads in the optical images and eliminating noisy roads, especially when dealing with areas where buildings are located along the roads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南桑完成签到,获得积分10
2秒前
4秒前
大清发布了新的文献求助10
4秒前
4秒前
星辰大海应助谦让傲菡采纳,获得10
5秒前
yao完成签到,获得积分10
5秒前
9秒前
大力元霜完成签到,获得积分10
10秒前
纯真大门发布了新的文献求助10
10秒前
FashionBoy应助wzc采纳,获得10
10秒前
清秀灵薇完成签到,获得积分10
11秒前
小蘑菇应助1231采纳,获得10
12秒前
12秒前
easonchen12312完成签到,获得积分10
12秒前
狂看文献发布了新的文献求助10
13秒前
13秒前
乐乐应助刘叶采纳,获得10
16秒前
艺术家脾气完成签到,获得积分10
16秒前
yingying完成签到 ,获得积分10
16秒前
谦让傲菡发布了新的文献求助10
17秒前
adfadf发布了新的文献求助10
18秒前
纯真大门完成签到,获得积分20
18秒前
打工人不酷完成签到 ,获得积分10
22秒前
充电宝应助宋鹏浩采纳,获得10
23秒前
laihama完成签到,获得积分10
23秒前
25秒前
26秒前
adfadf完成签到,获得积分10
28秒前
31秒前
xiajj发布了新的文献求助10
31秒前
吃吃发布了新的文献求助30
32秒前
langwang完成签到,获得积分10
32秒前
鲸落发布了新的文献求助10
37秒前
徐钗欣完成签到,获得积分10
39秒前
吃吃完成签到,获得积分20
40秒前
上官若男应助苯基乙胺采纳,获得10
44秒前
嵇紫山完成签到,获得积分10
45秒前
45秒前
xiajj关注了科研通微信公众号
45秒前
48秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740384
求助须知:如何正确求助?哪些是违规求助? 3283238
关于积分的说明 10034517
捐赠科研通 3000118
什么是DOI,文献DOI怎么找? 1646328
邀请新用户注册赠送积分活动 783510
科研通“疑难数据库(出版商)”最低求助积分说明 750394