水镁石
碳化作用
超临界流体
成核
材料科学
结晶
化学工程
微晶
无定形固体
原位
热重分析
溶解
镁
矿物学
化学
结晶学
有机化学
复合材料
冶金
工程类
作者
Xin Zhang,Alan S. Lea,Anne M. Chaka,John S. Loring,Sebastian T. Mergelsberg,Elias Nakouzi,Odeta Qafoku,James J. DeYoreo,Herbert T. Schaef,Kevin M. Rosso
出处
期刊:Nature Materials
[Springer Nature]
日期:2021-11-29
卷期号:21 (3): 345-351
被引量:18
标识
DOI:10.1038/s41563-021-01154-5
摘要
Progress in understanding crystallization pathways depends on the ability to unravel relationships between intermediates and final crystalline products at the nanoscale, which is a particular challenge at elevated pressure and temperature. Here we exploit a high-pressure atomic force microscope to directly visualize brucite carbonation in water-bearing supercritical carbon dioxide (scCO2) at 90 bar and 50 °C. On introduction of water-saturated scCO2, in situ visualization revealed initial dissolution followed by nanoparticle nucleation consistent with amorphous magnesium carbonate (AMC) on the surface. This is followed by growth of nesquehonite (MgCO3·3H2O) crystallites. In situ imaging provided direct evidence that the AMC intermediate acts as a seed for crystallization of nesquehonite. In situ infrared and thermogravimetric-mass spectrometry indicate that the stoichiometry of AMC is MgCO3·xH2O (x = 0.5-1.0), while its structure is indicated to be hydromagnesite-like according to density functional theory and X-ray pair distribution function analysis. Our findings thus provide insight for understanding the stability, lifetime and role of amorphous intermediates in natural and synthetic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI