A radiomic nomogram based on T2WI for predicting synchronous liver metastasis of rectal cancer

列线图 医学 逻辑回归 单变量 结直肠癌 无线电技术 Lasso(编程语言) 放射科 单变量分析 转移 肿瘤科 多元分析 多元统计 内科学 癌症 机器学习 万维网 计算机科学
作者
Zhenyu Shu,Songhua Fang,Shengli Yuan,Dewang Mao,Rui Chai,Yuanjun Chen,Xiangyang Gong
出处
期刊:Chinese journal of radiology 卷期号:53 (3): 205-211
标识
DOI:10.3760/cma.j.issn.1005-1201.2019.03.009
摘要

Objective To explore the clinical feasibility of predicting synchronous liver metastases based on MRI radiomics nomogram based on T2WI in rectal cancer. Methods The imaging and clinical data of 261 patients with primary rectal cancer admitted to Zhejiang People′s Hospital from April 2012 to May 2018 were retrospectively analyzed. 101 patients were accompanied by synchronous liver metastasis All cases were divided into training group (n=182) and verification group (n=79). T2WI image of each patient was selected to extract texture features by AK analysis software of GE company. A radiomics signature was constructed after reduction of dimension in training group by the least absolute shrinkage and selection operator (LASSO). Univariate logistic regression was used to select for independent clinical risk factors and multivariate logistic regression along with imaging omics tags were used to construct predictive models and nomogram. ROC was used to assess the accuracy of the nomogram in the training group and to verify them by the validation group. Finally, the clinical efficacy of each patient′s synchronized liver metastasis risk factor was calculated based on the nomogram. Results A total of 328 texture features were extracted from the T2WI. Seven most valuable features were selected after reducing the dimension by LASSO algorithm, including 3 co-occurrence matrices (GLCM) and 4 run-length matrices(RLM). Tumor staging and radiomic signatures were included in the Multifactor logistic regression to build the prediction model and nomogram. The accuracy of predicting SRLM was 0.862 and 0.844 in the training and the verification group, respectively. To evaluate the accuracy of the nomogram, radiomics signature and the tumor staging in all cases were 0.857, 0.832 and 0.663, respectively. There was no significant difference in the number of SRLM cases between the high risk group and the low risk group based on nomogram (P>0.05). Conclusion The radiomics nomogram based on T2WI can be used as a quantitative tool to predict synchronous liver metastases of rectal cancer. Key words: Rectal neoplasms; Radiomics; Synchronous liver metastases; Magnetic resonance images; Nomogram
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葡萄发布了新的文献求助40
1秒前
马克图布完成签到,获得积分10
2秒前
義蘭发布了新的文献求助10
2秒前
ldh032应助猪猪hero采纳,获得10
3秒前
4秒前
5秒前
Xingkun_li完成签到,获得积分10
5秒前
6秒前
7秒前
甪用完成签到,获得积分10
8秒前
10秒前
Mr_X发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
15秒前
勤奋高丽完成签到,获得积分10
15秒前
陈雷发布了新的文献求助10
15秒前
挽风发布了新的文献求助10
16秒前
果果完成签到,获得积分10
16秒前
xiaole完成签到 ,获得积分10
16秒前
今后应助mu采纳,获得10
17秒前
笑面客发布了新的文献求助10
18秒前
Hello应助jasmine采纳,获得10
18秒前
皓轩发布了新的文献求助10
18秒前
glzh123完成签到,获得积分20
22秒前
27秒前
27秒前
29秒前
852应助griffon采纳,获得10
29秒前
科研通AI2S应助乾乾采纳,获得30
30秒前
30秒前
小二郎应助好好采纳,获得10
30秒前
专注的马里奥完成签到,获得积分10
31秒前
32秒前
英姑应助pbj采纳,获得10
33秒前
33秒前
猪猪hero发布了新的文献求助10
33秒前
杨老师完成签到 ,获得积分10
34秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
中国化工新材料产业发展报告(2024年) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3762952
求助须知:如何正确求助?哪些是违规求助? 3307438
关于积分的说明 10139872
捐赠科研通 3022587
什么是DOI,文献DOI怎么找? 1659152
邀请新用户注册赠送积分活动 792378
科研通“疑难数据库(出版商)”最低求助积分说明 754957