本底辐射
探测器
衰变链
巧合
辐射
物理
放射性核素
放射化学
核物理学
化学
光学
医学
病理
替代医学
作者
Hao Cheng,B. Sun,Lihua Zhu,Tianxiao Li,Guangshuai Li,Congbo Li,Xiaofeng Wu,Yun Zheng
标识
DOI:10.1007/s41365-020-00812-8
摘要
The LaBr3(Ce) detector has attracted much attention in recent years because of its superior characteristics compared with other scintillating materials in terms of resolution and efficiency. However, it has a relatively high intrinsic background radiation because of the naturally occurring radioisotopes in lanthanum, actinium, and their daughter nuclei. This limits its applications in low-counting rate experiments. In this study, we identified the radioactive isotopes in the $$\phi 3''\times 3''$$ Saint-Gobain B380 detector by a coincidence measurement using a Clover detector in a low-background shielding system. Moreover, we carried out a Geant4 simulation of the experimental spectra to evaluate the activities of the main internal radiation components. The total activity of the background radiation of B380 is determined to be 1.523 (34) Bq/cm3. The main sources include 138La at 1.428 (34) Bq/cm3, 207Tl at 0.0135 (13) Bq/cm3, 211Bi at 0.0136 (15) Bq/cm3, 215Po at 0.0135 (3) Bq/cm3, 219Rn at 0.0125 (12) Bq/cm3, 223Fr at 0.0019 (11) Bq/cm3, 223Ra at 0.0127 (10) Bq/cm3, 227Th at 0.0158 (22) Bq/cm3, and 227Ac at 0.0135 (13) Bq/cm3. Of these, the activities of 207Tl, 211Po, 215Po, 223Fr, and 227Ac are deduced for the first time from the secular equilibrium established in the decay chain of 227Ac.
科研通智能强力驱动
Strongly Powered by AbleSci AI