Effect of AlGaN interlayer on the GaN/InGaN/GaN/AlGaN multi-quantum wells structural properties toward red light emission

宽禁带半导体 材料科学 光致发光 光电子学 量子阱 外延 衍射 图层(电子) 堆栈(抽象数据类型) 阻挡层 金属有机气相外延 发光二极管 化学气相沉积 透射电子显微镜 氮化镓 光学 物理 纳米技术 程序设计语言 激光器 计算机科学
作者
P. Ruterana,Magali Morales,Nicolas Chery,Thi Huong Ngo,Marie-Pierre Chauvat,Kaddour Lekhal,B. Damilano,Bernard Gil
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:128 (22) 被引量:9
标识
DOI:10.1063/5.0027119
摘要

In this work, InGaN/GaN multi-quantum Wells (MQWs) with strain compensating AlGaN interlayers grown by metalorganic vapor-phase epitaxy have been investigated by high-resolution x-ray diffraction, transmission electron microscopy, and photoluminescence (PL). For different AlGaN strain compensating layer thicknesses varying from 0 to 10.6 nm, a detailed x-ray diffraction analysis shows that the MQW stack becomes completely strained on GaN along a and c. The compensation is full from an AlGaN layer thickness of 5.2 nm, and this does not change up to the largest one that has been investigated. In this instance, AlGaN was grown at the same temperature as the GaN barrier, on top of a protective 3 nm GaN. It is found that the crystalline quality of the system is progressively degraded when the thickness of the AlGaN interlayer is increased through strain concentrated domains, which randomly form inside the 3 nm GaN low temperature layer. These domains systematically contribute to a local decrease of the QW thickness and most probably to an efficient localization of carriers. Despite these defects, the PL is highly improved toward the red wavelengths and compares with the reports on ultrathin AlGaN layers where this has been correlated with the improvement of the crystalline quality, although with less strain compensation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
润润轩轩发布了新的文献求助10
1秒前
1秒前
orixero应助韭黄采纳,获得10
2秒前
gnufgg完成签到,获得积分10
2秒前
科研通AI5应助tabor采纳,获得10
2秒前
2秒前
互助互惠互通完成签到,获得积分10
2秒前
脑洞疼应助ziyiziyi采纳,获得10
3秒前
3秒前
3秒前
屹舟完成签到,获得积分10
4秒前
zjudxn关注了科研通微信公众号
4秒前
5秒前
5秒前
科研通AI5应助hu970采纳,获得10
5秒前
5秒前
艺玲发布了新的文献求助10
6秒前
咚咚咚完成签到,获得积分10
6秒前
芋圆Z.完成签到,获得积分10
6秒前
atad2发布了新的文献求助10
6秒前
li梨完成签到,获得积分10
6秒前
7秒前
晏小敏完成签到,获得积分10
7秒前
爆米花应助风中寄云采纳,获得10
8秒前
屹舟发布了新的文献求助10
8秒前
Dou完成签到,获得积分10
8秒前
白泯完成签到,获得积分10
9秒前
1ssd发布了新的文献求助10
9秒前
667发布了新的文献求助10
9秒前
小二郎应助辰柒采纳,获得10
10秒前
11秒前
11秒前
clear完成签到,获得积分20
11秒前
11秒前
orixero应助congguitar采纳,获得10
11秒前
Evan完成签到,获得积分10
11秒前
YANG发布了新的文献求助10
12秒前
12秒前
123发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759