Robotic Pushing and Grasping Knowledge Learning via Attention Deep Q-learning Network

计算机科学 人工智能 任务(项目管理) 机器人 公制(单位) 加权 机械手 深度学习 动作(物理) 机器学习 工程类 物理 放射科 医学 系统工程 量子力学 运营管理
作者
Zipeng Yang,Huiliang Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 223-234 被引量:7
标识
DOI:10.1007/978-3-030-55130-8_20
摘要

Robotic grasping is a fundamental manipulation in multiple robotic tasks, which has great research significance. It is challenging to perform robotic grasping in cluttered environments due to the occlusion and stacking of objects. We propose an attention deep Q-learning network for robotic grasping with the assistance of pushing actions with non-sparse rewards. The attention network improves the performance of deep Q-learning network by weighting feature channels. The robot use pushing actions to dilute dense objects to create space for grasping. The pushing and grasping knowledge are learned by trial and error in a self-supervised way. To evaluate the robotic grasping performance, we present an overall performance metric, which contains three evaluation factors: task completion rate, grasping success rate and action efficiency. The experimental environment is established on the V-REP simulation software to verify our proposed model. The results show that our pushing strategy can not only improve robotic grasping performance but also avoid unnecessary pushing actions to improve action efficiency. At the same time, ablation studies prove the effectiveness of the attention mechanism. Our proposed method can achieve overall performance of 82.33% for robotic grasping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢喜板凳发布了新的文献求助10
1秒前
momo完成签到 ,获得积分10
1秒前
张国柱完成签到,获得积分10
1秒前
潇潇完成签到 ,获得积分10
1秒前
1秒前
路瑶瑶完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
tracer完成签到,获得积分10
3秒前
mhy完成签到 ,获得积分10
3秒前
欣欣发布了新的文献求助10
3秒前
花生酱发布了新的文献求助10
3秒前
dj完成签到,获得积分10
3秒前
3秒前
5秒前
田様应助诚心靳采纳,获得10
6秒前
NexusExplorer应助董晏殊采纳,获得10
6秒前
爱因斯宣发布了新的文献求助10
6秒前
李健的小迷弟应助lenon采纳,获得10
6秒前
6秒前
桐桐应助张文静采纳,获得30
7秒前
7秒前
金不换发布了新的文献求助10
7秒前
Grace完成签到,获得积分10
7秒前
苏氨酸发布了新的文献求助10
7秒前
明亮的绫发布了新的文献求助10
7秒前
赘婿应助yier采纳,获得10
8秒前
8秒前
kyleaa发布了新的文献求助10
8秒前
bey发布了新的文献求助10
8秒前
小飞飞完成签到,获得积分10
9秒前
9秒前
伊戈达拉一个大拉完成签到,获得积分10
10秒前
niat发布了新的文献求助10
10秒前
10秒前
卡卡123发布了新的文献求助10
11秒前
轻松的惜芹应助苦哈哈采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650