Robotic Pushing and Grasping Knowledge Learning via Attention Deep Q-learning Network

计算机科学 人工智能 任务(项目管理) 机器人 公制(单位) 加权 机械手 深度学习 动作(物理) 机器学习 工程类 物理 放射科 医学 系统工程 量子力学 运营管理
作者
Zipeng Yang,Huiliang Shang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 223-234 被引量:7
标识
DOI:10.1007/978-3-030-55130-8_20
摘要

Robotic grasping is a fundamental manipulation in multiple robotic tasks, which has great research significance. It is challenging to perform robotic grasping in cluttered environments due to the occlusion and stacking of objects. We propose an attention deep Q-learning network for robotic grasping with the assistance of pushing actions with non-sparse rewards. The attention network improves the performance of deep Q-learning network by weighting feature channels. The robot use pushing actions to dilute dense objects to create space for grasping. The pushing and grasping knowledge are learned by trial and error in a self-supervised way. To evaluate the robotic grasping performance, we present an overall performance metric, which contains three evaluation factors: task completion rate, grasping success rate and action efficiency. The experimental environment is established on the V-REP simulation software to verify our proposed model. The results show that our pushing strategy can not only improve robotic grasping performance but also avoid unnecessary pushing actions to improve action efficiency. At the same time, ablation studies prove the effectiveness of the attention mechanism. Our proposed method can achieve overall performance of 82.33% for robotic grasping.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkl1542完成签到,获得积分10
1秒前
1秒前
caohuijun发布了新的文献求助10
2秒前
杳鸢应助韦颖采纳,获得20
3秒前
3秒前
wshwx完成签到 ,获得积分10
3秒前
3秒前
魏伯安发布了新的文献求助10
4秒前
4秒前
传奇3应助daniel采纳,获得10
4秒前
ding应助帅气的听莲采纳,获得10
4秒前
sunshine完成签到,获得积分10
5秒前
大方嵩发布了新的文献求助10
5秒前
SciGPT应助tianny采纳,获得10
5秒前
skier发布了新的文献求助10
6秒前
HHHWJ完成签到 ,获得积分10
6秒前
敏感的芷发布了新的文献求助10
6秒前
怡然剑成关注了科研通微信公众号
6秒前
共享精神应助zhouleibio采纳,获得10
6秒前
贤惠的早晨完成签到 ,获得积分10
7秒前
六月毕业发布了新的文献求助10
7秒前
科研通AI5应助平常的毛豆采纳,获得10
7秒前
韦颖完成签到,获得积分20
9秒前
沉默的冬寒完成签到 ,获得积分10
10秒前
海科科给海科科的求助进行了留言
10秒前
迅速斑马完成签到,获得积分10
10秒前
百合完成签到 ,获得积分10
10秒前
wanghua完成签到,获得积分10
10秒前
Hello应助13679165979采纳,获得10
11秒前
ni发布了新的文献求助10
13秒前
隐形曼青应助敏感的芷采纳,获得10
13秒前
ybb完成签到,获得积分10
16秒前
16秒前
快乐的伟诚完成签到,获得积分10
18秒前
搜集达人应助大胆夜绿采纳,获得10
18秒前
18秒前
19秒前
辛勤的无血完成签到,获得积分10
22秒前
23秒前
rookie完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824