Multi-scale classification and evaluation of shale reservoirs and ‘sweet spot’ prediction of the second and third members of the Qingshankou Formation in the Songliao Basin based on machine learning

油页岩 构造盆地 地质学 比例(比率) 四川盆地 石油工程 地貌学 地图学 计算机科学 地球化学 古生物学 地理 程序设计语言
作者
Daming Niu,Yilin Li,Yunfeng Zhang,Pingchang Sun,Haiguang Wu,Hang Fu,Wang Ze-qiang
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier]
卷期号:216: 110678-110678 被引量:14
标识
DOI:10.1016/j.petrol.2022.110678
摘要

Owing to the unique structure of shale reservoirs intercalated with thin siltstone in the second and third members of the Qingshankou Formation (K 1 qn 2+3 ) in the north of the Central Depression of the Songliao Basin, it is difficult to objectively predict and evaluate multi-scale (i.e., from the micro to macro scale) physical properties of the reservoir and the ‘sweet spot’ area (the area with the best reservoir quality). Using machine learning, we present herein a new machine learning framework (GCA-CE-MGPK) specific to reservoirs for studying the shale reservoirs in K 1 qn 2+3 . According to the results of a high-pressure mercury-injection experiment, organic geochemical analysis and scanning electron microscopy. Through grey correlation analysis, clustering ensemble and the Kriging model combined with macro geological parameters, an efficient, accurate and objective multi-scale evaluation of the shale reservoirs and the prediction of the ‘sweet spot’ area were realised. This method can be used to overcome difficulty in parameter selection, time-consuming classification of a large amount of data and difficulty in macro-scale reservoir prediction in the absence of seismic data with an average accuracy of 82.4%. The reservoir prediction results showed that the Class-I reservoir, the ‘sweet spots’ area, is mainly distributed in the north of the study area with an area of 3.15 × 10 8 m 2 ; the Class-II reservoir is mainly distributed in the north of the study area with an area of 9.88 × 10 8 m 2 ; the Class-III shale reservoir is the most widely distributed reservoir type with an area of 4.90 × 10 9 m 2 . Overall, compared with K 1 qn 1 , K 1 qn 2+3 offers more realistic oil and gas exploration potential and advantages. • A new machine learning framework of shale reservoir multi-scale evaluation and ‘sweet-spot’ prediction is established. • The classification evaluation standard of shale reservoir in the K 1 qn 2+3 is established. • The ‘sweet spot’ distribution of shale reservoir in the K 1 qn 2+3 is revealed. • The advantages of shale reservoir in the K 1 qn 2+3 are evaluated compared with the K 1 qn 1 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西里发布了新的文献求助10
刚刚
1秒前
2秒前
科研通AI2S应助ZME采纳,获得10
2秒前
安在哉发布了新的文献求助20
3秒前
毛豆应助花痴的海冬采纳,获得10
3秒前
3秒前
自然友菱完成签到,获得积分10
4秒前
w。发布了新的文献求助10
4秒前
楠楠发布了新的文献求助10
4秒前
Hh发布了新的文献求助10
7秒前
Shueason完成签到 ,获得积分10
8秒前
搜集达人应助w。采纳,获得10
8秒前
Sudon完成签到 ,获得积分10
9秒前
11秒前
小二郎应助ms采纳,获得10
11秒前
14秒前
善学以致用应助real采纳,获得10
18秒前
消消乐发布了新的文献求助30
20秒前
李家新29完成签到,获得积分10
20秒前
科研通AI2S应助乐正成危采纳,获得30
21秒前
动次打次应助科研通管家采纳,获得10
24秒前
NexusExplorer应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得30
24秒前
科目三应助科研通管家采纳,获得30
24秒前
cocolu应助科研通管家采纳,获得10
24秒前
wen应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
丰知然应助科研通管家采纳,获得10
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
瑾玉完成签到,获得积分10
26秒前
yaya发布了新的文献求助10
26秒前
27秒前
领导范儿应助吉吉国王采纳,获得10
29秒前
31秒前
清秀的吐司完成签到 ,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505840
捐赠科研通 2616702
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648967