Knowledge transfer-oriented deep neural network framework for estimation and forecasting the state of health of the Lithium-ion batteries

人工神经网络 自回归积分移动平均 均方误差 计算机科学 人工智能 机器学习 学习迁移 数据挖掘 统计 时间序列 数学
作者
Sajjad Maleki,Amin Mahmoudi,Amirmehdi Yazdani
出处
期刊:Journal of energy storage [Elsevier]
卷期号:53: 105183-105183 被引量:14
标识
DOI:10.1016/j.est.2022.105183
摘要

This paper proposes an efficient data-driven framework for estimating and forecasting the state of health (SOH) of Lithium-ion (Li-ion) batteries. The proposed framework is established upon a deep neural network (DNN) model, knowledge transfer asset, and autoregressive integrated moving average (ARIMA) forecasting model. The knowledge transfer property reduces the required data for training the model and hence the approach becomes fast and good fit for forecasting the SOH of Li-ion batteries. Among various possibilities, the most efficient training features are picked by Pearson correlation coefficient and least absolute shrinkage and selection operator (LASSO) regression. To suppress existing noises, Savitzky-Golay filter is applied to the signals. The proposed framework allows to use a limited portion of the dataset (about 25 %) for training phase and guarantees high accuracy (almost 96 %) of estimation according to coefficient of determination. Mean squared error (MSE) of the estimations is 0.00075 which is small enough to trust on results. MSE of the model not only during training via 25 % of data is measured, but also after training by 20 % and 30 % of dataset is calculated as well. Training by 20 % of dataset results in a great downfall in the model performance with a 26.6 % rise in the MSE value. Surprisingly, training the model with 30 % portion of the dataset does not add any noticeable accuracy to the model. This study confirms that the transfer learning property and DNN model combination could achieve a dramatic reduction of the dataset portion for training purpose.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhj发布了新的文献求助10
刚刚
枫叶完成签到,获得积分10
1秒前
酷波er应助iuv采纳,获得10
2秒前
Gru发布了新的文献求助10
2秒前
3秒前
goldNAN完成签到,获得积分10
3秒前
dm11完成签到,获得积分10
4秒前
CodeCraft应助民族风采纳,获得10
4秒前
涛哥来科研完成签到 ,获得积分10
4秒前
从容的方盒完成签到 ,获得积分10
6秒前
6秒前
6秒前
英俊的铭应助哈哈哈哈哈采纳,获得10
6秒前
苏靖完成签到,获得积分10
8秒前
健康的电灯胆完成签到,获得积分10
9秒前
木蒙蒙完成签到,获得积分10
9秒前
友好冥王星完成签到 ,获得积分10
10秒前
11秒前
一千岛完成签到,获得积分10
11秒前
艾欧比完成签到 ,获得积分10
11秒前
RUI发布了新的文献求助10
11秒前
11秒前
sword完成签到,获得积分10
12秒前
orixero应助高工采纳,获得10
12秒前
13秒前
13秒前
15秒前
畅彤完成签到,获得积分10
15秒前
元神完成签到 ,获得积分10
16秒前
自信甜瓜应助希勤采纳,获得10
17秒前
小籽橘完成签到,获得积分10
17秒前
可以发布了新的文献求助10
18秒前
happiness完成签到 ,获得积分10
19秒前
20秒前
脑洞疼应助李雪松采纳,获得10
21秒前
就是躺应助veraonly采纳,获得10
21秒前
21秒前
小周不吃粥完成签到 ,获得积分10
21秒前
rosalieshi应助科研通管家采纳,获得100
22秒前
SciGPT应助科研通管家采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011