Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification

感受野 点云 计算机科学 人工智能 模式识别(心理学) 分层(种子) 图形 计算机视觉 卷积(计算机科学) 领域(数学) 遥感 人工神经网络 数学 地理 理论计算机科学 种子休眠 植物 发芽 休眠 纯数学 生物
作者
Yiqi Mao,Kaiqiang Chen,Wenhui Diao,Xian Sun,Xiaonan Lü,Kun Fu,Martin Weinmann
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:188: 45-61 被引量:25
标识
DOI:10.1016/j.isprsjprs.2022.03.019
摘要

The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline (i.e. PointConv) approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. The experiments show that our RFFS-Net achieves a new state-of-the-art classification performance on powerline, car, and fence classes. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance. The code is available at github.com/WingkeungM/RFFS-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asdxsweef完成签到,获得积分10
刚刚
义气尔芙完成签到,获得积分10
1秒前
羊驼完成签到,获得积分10
2秒前
3秒前
3秒前
Elaine完成签到,获得积分10
4秒前
乐乐应助Ricewind采纳,获得10
4秒前
杨默发布了新的文献求助10
4秒前
科研通AI5应助zl采纳,获得10
4秒前
Albert发布了新的文献求助10
5秒前
5秒前
深情安青应助之和采纳,获得10
5秒前
糕糕完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助张凤采纳,获得10
7秒前
哈哈发布了新的文献求助10
7秒前
zaddy0905发布了新的文献求助30
7秒前
8秒前
9秒前
10秒前
12秒前
杨默完成签到,获得积分10
14秒前
喜悦的鬼神完成签到 ,获得积分10
14秒前
小白发布了新的文献求助10
14秒前
852应助白茶泡泡球采纳,获得10
15秒前
15秒前
fan2发布了新的文献求助10
15秒前
万能图书馆应助Chen272采纳,获得10
16秒前
16秒前
chemhub完成签到,获得积分10
17秒前
17秒前
科研通AI5应助杨默采纳,获得10
17秒前
ZZQ给ZZQ的求助进行了留言
17秒前
回霈琳发布了新的文献求助10
17秒前
17秒前
小马甲应助科研通管家采纳,获得10
18秒前
18秒前
STAR应助科研通管家采纳,获得10
18秒前
18秒前
呆萌忆秋发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668063
求助须知:如何正确求助?哪些是违规求助? 3226515
关于积分的说明 9769764
捐赠科研通 2936459
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759665
科研通“疑难数据库(出版商)”最低求助积分说明 735460