Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte

超级电容器 电解质 材料科学 化学工程 化学 电化学 电极 工程类 物理化学
作者
Manning Chen,Xiaoyu Shi,Xiaolei Wang,Hanqing Liu,Sen Wang,Caixia Meng,Yu Liu,Liangzhu Zhang,Yuanyuan Zhu,Zhong‐Shuai Wu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:72: 195-202 被引量:23
标识
DOI:10.1016/j.jechem.2022.04.029
摘要

By introducing ethylene glycol into aqueous LiCl solution, high-voltage and anti-freezing electrolyte with low cost and high ionic conductivity is developed for aqueous planar micro-supercapacitors, with high voltage, enhanced energy density and excellent low-temperature stability. Micro-supercapacitors (MSCs) are considered as highly competitive power sources for miniaturized electronics. However, narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption. Herein, we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes (HGE) through introducing ethylene glycol (EG) additives into aqueous LiCl electrolyte. Since EG partially destroys hydrogen bond network among water molecules, the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of −62.8 °C. Further, the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm −3 and energy density of 10.3 mWh cm −3 in the voltage of 1.6 V, 2.6 times higher than MSCs tested in 1.2 V. Importantly, the MSCs display 68.3% capacitance retention even at −30 °C compared to the value at 25 °C, and ultra-long cyclability with 85.7% of initial capacitance after 15,000 times, indicating extraordinary low-temperature performance. Besides, our devices offer favorable flexibility and modular integration. Therefore, this work provides a general strategy of realizing flexible, safe and anti-freezing microscale power sources, holding great potential towards subzero-temperature microelectronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助蔫蔫采纳,获得10
1秒前
Vroom完成签到,获得积分10
1秒前
phy完成签到,获得积分10
3秒前
爆米花应助苹果小小采纳,获得10
3秒前
jun完成签到 ,获得积分10
3秒前
4秒前
4秒前
Spectrum_07完成签到,获得积分10
5秒前
Belinda完成签到 ,获得积分10
5秒前
yahong完成签到 ,获得积分10
5秒前
6秒前
领导范儿应助Nathan采纳,获得10
6秒前
个性的雅柏完成签到,获得积分20
7秒前
善学以致用应助独特乘云采纳,获得10
8秒前
沐风发布了新的文献求助10
8秒前
吴世宇发布了新的文献求助10
8秒前
小文cremen发布了新的文献求助10
10秒前
朴素易梦完成签到 ,获得积分10
12秒前
bkagyin应助正直的西牛采纳,获得10
12秒前
LIU完成签到,获得积分10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
香蕉觅云应助个性的雅柏采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
whatever应助科研通管家采纳,获得20
13秒前
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
Akim应助科研通管家采纳,获得10
14秒前
14秒前
wanci应助科研通管家采纳,获得10
14秒前
whatever应助科研通管家采纳,获得20
14秒前
传奇3应助科研通管家采纳,获得20
14秒前
wos完成签到,获得积分10
14秒前
14秒前
犹豫芝麻应助科研通管家采纳,获得10
14秒前
14秒前
梓泽丘墟应助科研通管家采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162682
求助须知:如何正确求助?哪些是违规求助? 2813599
关于积分的说明 7901187
捐赠科研通 2473168
什么是DOI,文献DOI怎么找? 1316684
科研通“疑难数据库(出版商)”最低求助积分说明 631482
版权声明 602175