已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and Validation of a Score for Fibrotic Nonalcoholic Steatohepatitis

医学 内科学 非酒精性脂肪肝 脂肪性肝炎 胃肠病学 脂肪肝 非酒精性脂肪性肝炎 疾病
作者
Federica Tavaglione,Oveis Jamialahmadi,Antonio De Vincentis,S. U. Qadri,Mohammad Erfan Mowlaei,Rosellina Margherita Mancina,Ester Ciociola,Simone Carotti,Giuseppe Perrone,Vincenzo Bruni,Ida Francesca Gallo,Dario Tuccinardi,Cristiana Bianco,Daniele Prati,Silvia Manfrini,Paolo Pozzilli,Antonio Picardi,Marco Caricato,Hannele Yki‐Järvinen,Luca Valenti
出处
期刊:Clinical Gastroenterology and Hepatology [Elsevier BV]
卷期号:21 (6): 1523-1532.e1 被引量:58
标识
DOI:10.1016/j.cgh.2022.03.044
摘要

Background & AimsNoninvasive assessment of histological features of nonalcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple noninvasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic nonalcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score ≥4, and fibrosis stage ≥2.MethodsThe derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in 3 independent European cohorts (Finland, n = 370; Italy, n = 947; England, n = 5368) of individuals at high risk for NAFLD.ResultsThe final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase, high-density lipoprotein cholesterol, and hemoglobin A1c. The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROC = 0.78 and AUROC = 0.80–0.95, respectively). In the derivation cohort, rule-out and rule-in cutoffs were 0.10 for sensitivity ≥0.89 (negative predictive value, 0.93) and 0.33 for specificity ≥0.90 (positive predictive value, 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (negative predictive value, 0.99-1) and specificity from 0.73 to 0.94 (positive predictive value, 0.12-0.49) for rule-out and rule-in cutoff, respectively.ConclusionFNI is an accurate, simple, and affordable noninvasive score which can be used to screen for fibrotic NASH in individuals with dysmetabolism in primary health care. Noninvasive assessment of histological features of nonalcoholic fatty liver disease (NAFLD) has been an intensive research area over the last decade. Herein, we aimed to develop a simple noninvasive score using routine laboratory tests to identify, among individuals at high risk for NAFLD, those with fibrotic nonalcoholic steatohepatitis (NASH) defined as NASH, NAFLD activity score ≥4, and fibrosis stage ≥2. The derivation cohort included 264 morbidly obese individuals undergoing intraoperative liver biopsy in Rome, Italy. The best predictive model was developed and internally validated using a bootstrapping stepwise logistic regression analysis (2000 bootstrap samples). Performance was estimated by the area under the receiver operating characteristic curve (AUROC). External validation was assessed in 3 independent European cohorts (Finland, n = 370; Italy, n = 947; England, n = 5368) of individuals at high risk for NAFLD. The final predictive model, designated as Fibrotic NASH Index (FNI), combined aspartate aminotransferase, high-density lipoprotein cholesterol, and hemoglobin A1c. The performance of FNI for fibrotic NASH was satisfactory in both derivation and external validation cohorts (AUROC = 0.78 and AUROC = 0.80–0.95, respectively). In the derivation cohort, rule-out and rule-in cutoffs were 0.10 for sensitivity ≥0.89 (negative predictive value, 0.93) and 0.33 for specificity ≥0.90 (positive predictive value, 0.57), respectively. In the external validation cohorts, sensitivity ranged from 0.87 to 1 (negative predictive value, 0.99-1) and specificity from 0.73 to 0.94 (positive predictive value, 0.12-0.49) for rule-out and rule-in cutoff, respectively. FNI is an accurate, simple, and affordable noninvasive score which can be used to screen for fibrotic NASH in individuals with dysmetabolism in primary health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到 ,获得积分10
2秒前
西瓜刀完成签到 ,获得积分10
2秒前
zhuming完成签到,获得积分10
6秒前
小紫薯完成签到 ,获得积分10
6秒前
MchemG应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
7秒前
7秒前
小孟吖完成签到 ,获得积分10
7秒前
zjq发布了新的文献求助10
8秒前
niulugai完成签到,获得积分10
8秒前
闪闪的梦柏完成签到 ,获得积分10
8秒前
积极以云完成签到,获得积分10
10秒前
柚子完成签到 ,获得积分10
12秒前
蛋挞好好吃完成签到,获得积分10
12秒前
ralph_liu完成签到,获得积分10
12秒前
Fn完成签到 ,获得积分10
15秒前
山下梅子酒完成签到 ,获得积分10
16秒前
木又完成签到 ,获得积分10
16秒前
冷静梦露完成签到,获得积分20
17秒前
zjq完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
Jepsen完成签到 ,获得积分10
21秒前
海聪天宇发布了新的文献求助10
21秒前
22秒前
Nancy0818完成签到 ,获得积分10
25秒前
25秒前
NexusExplorer应助callmefather采纳,获得10
26秒前
树懒发布了新的文献求助10
27秒前
m李完成签到 ,获得积分10
27秒前
雾影觅光完成签到,获得积分10
31秒前
楼翩跹完成签到 ,获得积分10
31秒前
符fu完成签到 ,获得积分10
31秒前
睡到自然醒完成签到 ,获得积分10
32秒前
Percy完成签到 ,获得积分10
33秒前
周粥完成签到,获得积分10
35秒前
X先生完成签到 ,获得积分10
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Theranostics and Precision Medicine for the Management of Hepatocellular Carcinoma 500
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352