血管生成
间充质干细胞
细胞生物学
再生(生物学)
骨愈合
生物
PI3K/AKT/mTOR通路
蛋白激酶B
缺氧(环境)
干细胞
癌症研究
化学
磷酸化
信号转导
解剖
有机化学
氧气
作者
Yu Zhuang,Mengjia Cheng,Meng Li,Jinjie Cui,Jinyang Huang,Shouxin Zhang,Jiawen Si,Kaili Lin,Hongbo Yu
标识
DOI:10.1016/j.actbio.2022.07.015
摘要
Angiogenesis is closely coupled with osteogenesis and has equal importance. Thus, promoting angiogenesis during the bone repair process is vital for ideal bone regeneration. As important mediators of cell-cell communication and biological homeostasis, mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proved to be highly involved in bone and vascular regeneration. Because hypoxia microenvironment promotes the proangiogenic activity of MSCs, in the present study, we investigate the effect and underlying molecular mechanisms of sEVs from hypoxia-preconditioned MSCs (hypo-sEVs) on angiogenesis and develop an effective strategy to promote vascularized bone regeneration. Compared to sEVs from normoxia MSCs (nor-sEVs), hypo-sEVs promoted the proliferation, migration, and angiogenesis of HUVECs and ultimately enhanced bone regeneration and new blood vessel reconstruction in a critical-size calvarial bone defect model. miRNA sequence and the verified results showed that miR-210-3p in hypo-sEVs was increased via HIF-1α under hypoxia. The upregulated miR-210-3p in hypo-sEVs promoted angiogenesis by downregulating EFNA3 expression and enhancing the phosphorylation of the PI3K/AKT pathway. Thus, this study suggests a successful strategy to enhance vascularized bone regeneration by utilizing hypo-sEVs via the miR-210-3p/EFNA3/PI3K/AKT pathway. STATEMENT OF SIGNIFICANCE: Considering the significance of vascularization in ideal bone regeneration, strategies to promote angiogenesis during bone repair are required. Hypoxia microenvironment can promote the proangiogenic potential of mesenchymal stem cells (MSCs). Nonetheless, the therapeutic effect of small extracellular vesicles (sEVs) from hypoxia-preconditioned MSCs on cranio-maxillofacial bone defect remains unknown, and the underlying mechanism is poorly understood. This study shows that hypo-sEVs significantly enhance the proliferation, migration, and angiogenesis of HUVECs as well as promote vascularized bone formation. Moreover, this work indicates that HIF-1α can induce overexpression of miR-210-3p under hypoxia, and miR-210-3p can hinder EFNA3 expression and subsequently activate the PI3K/AKT pathway. The application of hypo-sEVs provides a facile and promising strategy to promote vascularized bone regeneration in a critical-size bone defect model.
科研通智能强力驱动
Strongly Powered by AbleSci AI