A Combined Feature Screening Approach of Random Forest and Filterbased Methods for Ultra-high Dimensional Data

随机森林 计算机科学 数据挖掘 滤波器(信号处理) 背景(考古学) 水准点(测量) 机器学习 人工智能 特征(语言学) 独立性(概率论) 统计 数学 地理 语言学 哲学 考古 计算机视觉 大地测量学
作者
Lifeng Zhou,Hong Wang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (4): 344-357 被引量:13
标识
DOI:10.2174/1574893617666220221120618
摘要

Background: Various feature (variable) screening approaches have been proposed in the past decade to mitigate the impact of ultra-high dimensionality in classification and regression problems, including filter based methods such as sure independence screening, and wrapper based methods such as random forest. However, the former type of methods rely heavily on strong modelling assumptions while the latter ones requires an adequate sample size to make the data speak for themselves. These requirements can seldom be met in biochemical studies in cases where we have only access to ultra-high dimensional data with a complex structure and a small number of observations. Objective: In this research, we want to investigate the possibility of combining both filter based screening methods and random forest based screening methods in the regression context. Method: We have combined four state-of-art filter approaches, namely, sure independence screening (SIS), robust rank correlation based screening (RRCS), high dimensional ordinary least squares projection (HOLP) and a model free sure independence screening procedure based on the distance correlation (DCSIS) from the statistical community with a random forest based Boruta screening method from the machine learning community for regression problems. Result: Among all the combined methods, RF-DCSIS performs better than the other methods in terms of screening accuracy and prediction capability on the simulated scenarios and real benchmark datasets. Conclusion: By empirical study from both extensive simulation and real data, we have shown that both filter based screening and random forest based screening have their pros and cons, while a combination of both may lead to a better feature screening result and prediction capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助小吉采纳,获得10
1秒前
俭朴的身影完成签到,获得积分10
2秒前
mosso完成签到,获得积分10
2秒前
DAJI完成签到,获得积分10
2秒前
CHEN完成签到 ,获得积分10
2秒前
啊哈哈完成签到,获得积分10
2秒前
Litoivda完成签到 ,获得积分10
3秒前
3秒前
3秒前
爆米花应助wei采纳,获得10
5秒前
6秒前
善学以致用应助言全采纳,获得10
6秒前
6秒前
wenxiang发布了新的文献求助10
8秒前
8秒前
啾咪发布了新的文献求助10
8秒前
Janusfaces发布了新的文献求助10
9秒前
Zzz发布了新的文献求助10
9秒前
所所应助WangXiaoze采纳,获得10
10秒前
无花果应助栗子采纳,获得10
11秒前
ivy0425完成签到,获得积分10
13秒前
zhaizhai完成签到,获得积分10
16秒前
19秒前
阿透完成签到,获得积分10
22秒前
23秒前
星辰大海应助研友_LkDm3n采纳,获得10
24秒前
24秒前
biang关注了科研通微信公众号
25秒前
朝气发布了新的文献求助10
26秒前
26秒前
难过冷亦完成签到,获得积分10
27秒前
27秒前
虚心茉莉发布了新的文献求助10
28秒前
CipherSage应助白泽采纳,获得10
28秒前
我独舞完成签到 ,获得积分10
28秒前
WangXiaoze发布了新的文献求助10
28秒前
30秒前
sciences发布了新的文献求助10
30秒前
Janusfaces完成签到,获得积分10
30秒前
wb完成签到,获得积分10
31秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3258334
求助须知:如何正确求助?哪些是违规求助? 2900116
关于积分的说明 8309137
捐赠科研通 2569374
什么是DOI,文献DOI怎么找? 1395671
科研通“疑难数据库(出版商)”最低求助积分说明 653188
邀请新用户注册赠送积分活动 631121