A Combined Feature Screening Approach of Random Forest and Filterbased Methods for Ultra-high Dimensional Data

随机森林 计算机科学 数据挖掘 滤波器(信号处理) 背景(考古学) 水准点(测量) 机器学习 人工智能 特征(语言学) 独立性(概率论) 统计 数学 地理 语言学 哲学 考古 计算机视觉 大地测量学
作者
Lifeng Zhou,Hong Wang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:17 (4): 344-357 被引量:13
标识
DOI:10.2174/1574893617666220221120618
摘要

Background: Various feature (variable) screening approaches have been proposed in the past decade to mitigate the impact of ultra-high dimensionality in classification and regression problems, including filter based methods such as sure independence screening, and wrapper based methods such as random forest. However, the former type of methods rely heavily on strong modelling assumptions while the latter ones requires an adequate sample size to make the data speak for themselves. These requirements can seldom be met in biochemical studies in cases where we have only access to ultra-high dimensional data with a complex structure and a small number of observations. Objective: In this research, we want to investigate the possibility of combining both filter based screening methods and random forest based screening methods in the regression context. Method: We have combined four state-of-art filter approaches, namely, sure independence screening (SIS), robust rank correlation based screening (RRCS), high dimensional ordinary least squares projection (HOLP) and a model free sure independence screening procedure based on the distance correlation (DCSIS) from the statistical community with a random forest based Boruta screening method from the machine learning community for regression problems. Result: Among all the combined methods, RF-DCSIS performs better than the other methods in terms of screening accuracy and prediction capability on the simulated scenarios and real benchmark datasets. Conclusion: By empirical study from both extensive simulation and real data, we have shown that both filter based screening and random forest based screening have their pros and cons, while a combination of both may lead to a better feature screening result and prediction capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然完成签到,获得积分10
1秒前
明理小土豆完成签到,获得积分10
1秒前
刘国建郭菱香完成签到,获得积分10
1秒前
嘤嘤嘤完成签到,获得积分10
1秒前
九川应助粱自中采纳,获得10
1秒前
无辜之卉完成签到,获得积分10
2秒前
无花果应助Island采纳,获得10
2秒前
2秒前
SHDeathlock发布了新的文献求助200
3秒前
Owen应助醒醒采纳,获得10
3秒前
无心的代桃完成签到,获得积分10
4秒前
追寻代真完成签到,获得积分10
4秒前
晓兴兴完成签到,获得积分10
4秒前
leon发布了新的文献求助10
5秒前
洽洽瓜子shine完成签到,获得积分10
5秒前
简单的大白菜真实的钥匙完成签到,获得积分10
6秒前
7秒前
一独白完成签到,获得积分10
8秒前
在水一方应助坚强的樱采纳,获得10
8秒前
慕青应助尼亚吉拉采纳,获得10
9秒前
快乐小白菜应助甜酱采纳,获得10
9秒前
9秒前
qq应助毛慢慢采纳,获得10
10秒前
10秒前
科研通AI5应助吴岳采纳,获得10
10秒前
天天快乐应助ufuon采纳,获得10
11秒前
科研通AI5应助一独白采纳,获得10
12秒前
hearts_j完成签到,获得积分10
12秒前
FashionBoy应助yasan采纳,获得10
12秒前
安琪琪完成签到,获得积分10
13秒前
13秒前
端庄千琴完成签到,获得积分10
13秒前
gaogao完成签到,获得积分10
13秒前
菲菲公主完成签到,获得积分10
14秒前
14秒前
14秒前
英姑应助柒八染采纳,获得10
15秒前
退堂鼓发布了新的文献求助10
15秒前
党弛完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762