Deep learning for identifying radiogenomic associations in breast cancer

人工智能 深度学习 学习迁移 计算机科学 人工神经网络 乳腺癌 接收机工作特性 机器学习 磁共振成像 支持向量机 模式识别(心理学) 癌症 医学 放射科 内科学
作者
Zhe Zhu,Ehab A. AlBadawy,Ashirbani Saha,Jun Zhang,Michael R. Harowicz,Maciej A. Mazurowski
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:109: 85-90 被引量:133
标识
DOI:10.1016/j.compbiomed.2019.04.018
摘要

To determine whether deep learning models can distinguish between breast cancer molecular subtypes based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In this institutional review board–approved single-center study, we analyzed DCE-MR images of 270 patients at our institution. Lesions of interest were identified by radiologists. The task was to automatically determine whether the tumor is of the Luminal A subtype or of another subtype based on the MR image patches representing the tumor. Three different deep learning approaches were used to classify the tumor according to their molecular subtypes: learning from scratch where only tumor patches were used for training, transfer learning where networks pre-trained on natural images were fine-tuned using tumor patches, and off-the-shelf deep features where the features extracted by neural networks trained on natural images were used for classification with a support vector machine. Network architectures utilized in our experiments were GoogleNet, VGG, and CIFAR. We used 10-fold crossvalidation method for validation and area under the receiver operating characteristic (AUC) as the measure of performance. The best AUC performance for distinguishing molecular subtypes was 0.65 (95% CI:[0.57,0.71]) and was achieved by the off-the-shelf deep features approach. The highest AUC performance for training from scratch was 0.58 (95% CI:[0.51,0.64]) and the best AUC performance for transfer learning was 0.60 (95% CI:[0.52,0.65]) respectively. For the off-the-shelf approach, the features extracted from the fully connected layer performed the best. Deep learning may play a role in discovering radiogenomic associations in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fgh完成签到 ,获得积分10
刚刚
jkwang发布了新的文献求助10
1秒前
舒心乐荷完成签到,获得积分10
1秒前
1秒前
1秒前
大力犀牛完成签到,获得积分10
1秒前
1秒前
爆米花应助miomio采纳,获得10
2秒前
2秒前
3秒前
球闪发布了新的文献求助10
4秒前
xiaojcom应助滚滚向前你采纳,获得30
4秒前
aaaao完成签到,获得积分10
5秒前
李健应助碧蓝紫山采纳,获得10
5秒前
Magicbunny完成签到,获得积分10
6秒前
凌寻绿完成签到,获得积分10
6秒前
猪NO完成签到,获得积分10
6秒前
1464565388发布了新的文献求助10
6秒前
Lemuel完成签到,获得积分10
6秒前
往返发布了新的文献求助10
6秒前
时然发布了新的文献求助10
7秒前
阮楷瑞发布了新的文献求助10
7秒前
8秒前
健壮的月光完成签到,获得积分10
8秒前
weiwenzuo发布了新的文献求助10
9秒前
9秒前
10秒前
zd驳回了小二郎应助
10秒前
小易同学完成签到,获得积分10
11秒前
李健的小迷弟应助nnnnn采纳,获得10
11秒前
执玉完成签到,获得积分10
11秒前
孙悦完成签到,获得积分10
11秒前
miomio完成签到,获得积分10
12秒前
滚滚向前你完成签到,获得积分20
13秒前
qikuo应助潘道士采纳,获得10
13秒前
zm完成签到,获得积分10
13秒前
彭于晏应助杨乐多采纳,获得10
13秒前
彭于彦祖应助wan采纳,获得50
13秒前
13秒前
充电宝应助球闪采纳,获得10
13秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180621
求助须知:如何正确求助?哪些是违规求助? 2830913
关于积分的说明 7981698
捐赠科研通 2492579
什么是DOI,文献DOI怎么找? 1329670
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954