Deep learning for identifying radiogenomic associations in breast cancer

人工智能 深度学习 学习迁移 计算机科学 人工神经网络 乳腺癌 接收机工作特性 机器学习 磁共振成像 支持向量机 模式识别(心理学) 癌症 医学 放射科 内科学
作者
Zhe Zhu,Ehab A. AlBadawy,Ashirbani Saha,Jun Zhang,Michael R. Harowicz,Maciej A. Mazurowski
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:109: 85-90 被引量:133
标识
DOI:10.1016/j.compbiomed.2019.04.018
摘要

To determine whether deep learning models can distinguish between breast cancer molecular subtypes based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). In this institutional review board–approved single-center study, we analyzed DCE-MR images of 270 patients at our institution. Lesions of interest were identified by radiologists. The task was to automatically determine whether the tumor is of the Luminal A subtype or of another subtype based on the MR image patches representing the tumor. Three different deep learning approaches were used to classify the tumor according to their molecular subtypes: learning from scratch where only tumor patches were used for training, transfer learning where networks pre-trained on natural images were fine-tuned using tumor patches, and off-the-shelf deep features where the features extracted by neural networks trained on natural images were used for classification with a support vector machine. Network architectures utilized in our experiments were GoogleNet, VGG, and CIFAR. We used 10-fold crossvalidation method for validation and area under the receiver operating characteristic (AUC) as the measure of performance. The best AUC performance for distinguishing molecular subtypes was 0.65 (95% CI:[0.57,0.71]) and was achieved by the off-the-shelf deep features approach. The highest AUC performance for training from scratch was 0.58 (95% CI:[0.51,0.64]) and the best AUC performance for transfer learning was 0.60 (95% CI:[0.52,0.65]) respectively. For the off-the-shelf approach, the features extracted from the fully connected layer performed the best. Deep learning may play a role in discovering radiogenomic associations in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123发布了新的文献求助10
1秒前
1秒前
LYJ完成签到,获得积分10
1秒前
小亮哈哈发布了新的文献求助10
1秒前
1秒前
深情安青应助潇洒莞采纳,获得10
2秒前
乐乐应助朴素的绿柳采纳,获得10
3秒前
万能图书馆应助濮阳半蕾采纳,获得10
3秒前
3秒前
追寻冰淇淋应助小先采纳,获得10
3秒前
小小阿杰发布了新的文献求助10
3秒前
ff完成签到,获得积分10
4秒前
5秒前
天天快乐应助fdaqin采纳,获得10
5秒前
FF完成签到,获得积分10
5秒前
王子祥完成签到,获得积分20
5秒前
linmo发布了新的文献求助10
7秒前
阿猫发布了新的文献求助10
7秒前
一野发布了新的文献求助10
8秒前
xixi完成签到,获得积分10
8秒前
斯文败类应助二大爷采纳,获得10
8秒前
8秒前
SciGPT应助刘鑫宇老师采纳,获得10
8秒前
帅气的Q完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
萌新完成签到,获得积分10
10秒前
11秒前
尊敬的飞槐完成签到,获得积分10
12秒前
12秒前
12秒前
所所应助蓑衣客采纳,获得10
13秒前
阿猫完成签到,获得积分20
13秒前
嘻嘻完成签到,获得积分10
14秒前
深情安青应助cowboy123采纳,获得10
14秒前
15秒前
申申发布了新的文献求助10
15秒前
17秒前
周亭发布了新的文献求助80
17秒前
zhui发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180