Burn wound classification model using spatial frequency-domain imaging and machine learning

模式识别(心理学) 深度学习 卷积神经网络 学习迁移 上下文图像分类 人工神经网络 特征提取 随机森林
作者
Rebecca A. Rowland,Adrien Ponticorvo,Melissa L. Baldado,Gordon T. Kennedy,David M. Burmeister,Robert J. Christy,Nicole P. Bernal,Anthony J. Durkin
出处
期刊:Journal of Biomedical Optics [SPIE]
卷期号:24 (5): 1-9 被引量:15
标识
DOI:10.1117/1.jbo.24.5.056007
摘要

Accurate assessment of burn severity is critical for wound care and the course of treatment. Delays in classification translate to delays in burn management, increasing the risk of scarring and infection. To this end, numerous imaging techniques have been used to examine tissue properties to infer burn severity. Spatial frequency-domain imaging (SFDI) has also been used to characterize burns based on the relationships between histologic observations and changes in tissue properties. Recently, machine learning has been used to classify burns by combining optical features from multispectral or hyperspectral imaging. Rather than employ models of light propagation to deduce tissue optical properties, we investigated the feasibility of using SFDI reflectance data at multiple spatial frequencies, with a support vector machine (SVM) classifier, to predict severity in a porcine model of graded burns. Calibrated reflectance images were collected using SFDI at eight wavelengths (471 to 851 nm) and five spatial frequencies (0 to 0.2  mm  -  1). Three models were built from subsets of this initial dataset. The first subset included data taken at all wavelengths with the planar (0  mm  -  1) spatial frequency, the second comprised data at all wavelengths and spatial frequencies, and the third used all collected data at values relative to unburned tissue. These data subsets were used to train and test cubic SVM models, and compared against burn status 28 days after injury. Model accuracy was established through leave-one-out cross-validation testing. The model based on images obtained at all wavelengths and spatial frequencies predicted burn severity at 24 h with 92.5% accuracy. The model composed of all values relative to unburned skin was 94.4% accurate. By comparison, the model that employed only planar illumination was 88.8% accurate. This investigation suggests that the combination of SFDI with machine learning has potential for accurately predicting burn severity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
廉凌波完成签到,获得积分10
1秒前
hn发布了新的文献求助10
1秒前
sunrise_99完成签到,获得积分10
1秒前
LAN完成签到,获得积分10
2秒前
在水一方应助CC采纳,获得10
2秒前
合不着发布了新的文献求助10
2秒前
可可完成签到 ,获得积分10
2秒前
Lucas应助wanwan采纳,获得10
2秒前
Rain发布了新的文献求助10
2秒前
朝a完成签到,获得积分10
2秒前
someone完成签到,获得积分10
3秒前
今后应助李李采纳,获得10
3秒前
3秒前
爆米花应助QQQ采纳,获得10
4秒前
kzy发布了新的文献求助30
4秒前
5秒前
wanci应助丶丶采纳,获得10
5秒前
zzzzzz完成签到,获得积分10
6秒前
6秒前
6秒前
桐桐应助skf采纳,获得10
6秒前
sober123发布了新的文献求助10
6秒前
沙拉完成签到,获得积分10
6秒前
小二郎应助Rain采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
7秒前
Owen应助科研通管家采纳,获得30
7秒前
hans应助科研通管家采纳,获得10
7秒前
忐忑的黑猫应助杨一采纳,获得10
7秒前
pluto应助科研通管家采纳,获得20
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
kuroo应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
dada完成签到 ,获得积分10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3750666
求助须知:如何正确求助?哪些是违规求助? 3294173
关于积分的说明 10084559
捐赠科研通 3009375
什么是DOI,文献DOI怎么找? 1652667
邀请新用户注册赠送积分活动 787615
科研通“疑难数据库(出版商)”最低求助积分说明 752317