A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net

分割 人工智能 稳健性(进化) 模式识别(心理学) 图像分割 像素 斑点 计算机科学 数学 植物 生物 生物化学 基因
作者
Chun‐Shan Wang,Pengfei Du,Huarui Wu,Jiuxi Li,Chunjiang Zhao,Huaji Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:189: 106373-106373 被引量:146
标识
DOI:10.1016/j.compag.2021.106373
摘要

Research on the recognition and segmentation of vegetable diseases in simple environments based on deep learning has achieved a relative success. However, in complex environments, the image background often contains elements similar to the representation of leaves and disease spots, making it difficult for the recognition model to segment leaves and disease spots. Consequently, the segmentation precision is significantly reduced, which further affects the accuracy of disease severity classification. In response to this problem, while discussing and analyzing the advantages and disadvantages of DeepLabV3+ and U-Net, this study proposed a two-stage model that fuses DeepLabV3+ and U-Net for cucumber leaf disease severity classification (DUNet) in complex backgrounds. In the first stage, this model uses DeepLabV3+ to segment leaves from complex backgrounds. The images of leaves obtained after segmentation are used as the input for the second stage. In the second stage, U-Net is used to segment the diseased leaves to obtain disease spots. Finally, the ratio of the pixel area of disease spots over the pixel area of leaves is calculated so as to classify the disease severity. The experiment results show that the proposed model is able to segment leaves and disease spots from complex backgrounds in a step-by-step manner so as to complete disease severity classification. The leaf segmentation accuracy reached 93.27%, the Dice coefficient of disease spot segmentation reached 0.6914, and the average disease severity classification accuracy reached 92.85%. Compared with other models, the model proposed in this study has higher robustness, segmentation precision and classification accuracy, providing important ideas and methods for classifying the severity of cucumber leaf diseases in complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sasha发布了新的文献求助10
1秒前
2秒前
3秒前
小事发布了新的文献求助10
4秒前
科目三应助小仙女212采纳,获得10
5秒前
kysl发布了新的文献求助10
5秒前
情怀应助目鱼采纳,获得10
6秒前
行走的sci完成签到,获得积分10
7秒前
随便选发布了新的文献求助10
8秒前
无畏发布了新的文献求助30
10秒前
海洋完成签到,获得积分10
11秒前
11秒前
麻花阳应助退役干饭王采纳,获得10
14秒前
tkdzjr12345发布了新的文献求助10
15秒前
辞树完成签到,获得积分10
16秒前
sasha完成签到,获得积分10
17秒前
19秒前
sansan完成签到,获得积分10
23秒前
24秒前
26秒前
28秒前
嗨嗨嗨应助研友_Y59785采纳,获得100
29秒前
30秒前
han发布了新的文献求助10
30秒前
目鱼发布了新的文献求助10
31秒前
猫咪老师应助马俣辰采纳,获得20
33秒前
huangsongsong完成签到,获得积分10
35秒前
37秒前
38秒前
40秒前
yff发布了新的文献求助10
40秒前
zjs发布了新的文献求助10
42秒前
华仔应助Galaxee采纳,获得10
43秒前
小秋发布了新的文献求助10
44秒前
思源应助陶醉觅夏采纳,获得10
44秒前
45秒前
45秒前
45秒前
46秒前
李剑鸿发布了新的文献求助540
47秒前
高分求助中
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3110714
求助须知:如何正确求助?哪些是违规求助? 2760951
关于积分的说明 7663297
捐赠科研通 2415916
什么是DOI,文献DOI怎么找? 1282142
科研通“疑难数据库(出版商)”最低求助积分说明 618920
版权声明 599478