已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net

分割 人工智能 稳健性(进化) 模式识别(心理学) 图像分割 像素 斑点 计算机科学 数学 植物 生物 生物化学 基因
作者
Chun‐Shan Wang,Pengfei Du,Huarui Wu,Jiuxi Li,Chunjiang Zhao,Huaji Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:189: 106373-106373 被引量:202
标识
DOI:10.1016/j.compag.2021.106373
摘要

Research on the recognition and segmentation of vegetable diseases in simple environments based on deep learning has achieved a relative success. However, in complex environments, the image background often contains elements similar to the representation of leaves and disease spots, making it difficult for the recognition model to segment leaves and disease spots. Consequently, the segmentation precision is significantly reduced, which further affects the accuracy of disease severity classification. In response to this problem, while discussing and analyzing the advantages and disadvantages of DeepLabV3+ and U-Net, this study proposed a two-stage model that fuses DeepLabV3+ and U-Net for cucumber leaf disease severity classification (DUNet) in complex backgrounds. In the first stage, this model uses DeepLabV3+ to segment leaves from complex backgrounds. The images of leaves obtained after segmentation are used as the input for the second stage. In the second stage, U-Net is used to segment the diseased leaves to obtain disease spots. Finally, the ratio of the pixel area of disease spots over the pixel area of leaves is calculated so as to classify the disease severity. The experiment results show that the proposed model is able to segment leaves and disease spots from complex backgrounds in a step-by-step manner so as to complete disease severity classification. The leaf segmentation accuracy reached 93.27%, the Dice coefficient of disease spot segmentation reached 0.6914, and the average disease severity classification accuracy reached 92.85%. Compared with other models, the model proposed in this study has higher robustness, segmentation precision and classification accuracy, providing important ideas and methods for classifying the severity of cucumber leaf diseases in complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天真有邪完成签到 ,获得积分10
1秒前
欧皇完成签到,获得积分10
1秒前
Xuz完成签到 ,获得积分10
1秒前
XIAOMEIMA发布了新的文献求助10
1秒前
谦让的莆完成签到 ,获得积分10
2秒前
灰灰完成签到 ,获得积分10
2秒前
明月朗晴完成签到 ,获得积分10
2秒前
菠萝吹雪发布了新的文献求助10
3秒前
4秒前
wsb76完成签到 ,获得积分10
5秒前
AixLeft完成签到 ,获得积分10
5秒前
Yi发布了新的文献求助10
5秒前
Ricky完成签到,获得积分10
7秒前
哇咔咔完成签到 ,获得积分10
7秒前
ican发布了新的文献求助10
9秒前
9秒前
凸迩丝儿完成签到 ,获得积分10
10秒前
NattyPoe完成签到,获得积分10
10秒前
lu完成签到 ,获得积分10
11秒前
12秒前
泥泞完成签到 ,获得积分10
12秒前
南北完成签到 ,获得积分10
13秒前
大大怪将军关注了科研通微信公众号
13秒前
虚幻的道天完成签到 ,获得积分10
13秒前
Amelia完成签到 ,获得积分10
14秒前
haizz完成签到 ,获得积分10
14秒前
顺利的荔枝完成签到,获得积分10
15秒前
李响发布了新的文献求助10
16秒前
ACCEPT完成签到,获得积分10
16秒前
111发布了新的文献求助10
17秒前
满意的柏柳完成签到 ,获得积分10
20秒前
就爱吃抹茶完成签到 ,获得积分10
20秒前
Luna完成签到 ,获得积分10
20秒前
21秒前
22秒前
希望天下0贩的0应助木叶采纳,获得10
23秒前
别当真完成签到 ,获得积分10
23秒前
斯文败类应助ican采纳,获得10
23秒前
小匡完成签到 ,获得积分10
26秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345304
求助须知:如何正确求助?哪些是违规求助? 4480383
关于积分的说明 13945939
捐赠科研通 4377758
什么是DOI,文献DOI怎么找? 2405455
邀请新用户注册赠送积分活动 1398029
关于科研通互助平台的介绍 1370386