A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+ and U-Net

分割 人工智能 稳健性(进化) 模式识别(心理学) 图像分割 像素 斑点 计算机科学 数学 植物 生物 生物化学 基因
作者
Chun‐Shan Wang,Pengfei Du,Huarui Wu,Jiuxi Li,Chunjiang Zhao,Huaji Zhu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:189: 106373-106373 被引量:188
标识
DOI:10.1016/j.compag.2021.106373
摘要

Research on the recognition and segmentation of vegetable diseases in simple environments based on deep learning has achieved a relative success. However, in complex environments, the image background often contains elements similar to the representation of leaves and disease spots, making it difficult for the recognition model to segment leaves and disease spots. Consequently, the segmentation precision is significantly reduced, which further affects the accuracy of disease severity classification. In response to this problem, while discussing and analyzing the advantages and disadvantages of DeepLabV3+ and U-Net, this study proposed a two-stage model that fuses DeepLabV3+ and U-Net for cucumber leaf disease severity classification (DUNet) in complex backgrounds. In the first stage, this model uses DeepLabV3+ to segment leaves from complex backgrounds. The images of leaves obtained after segmentation are used as the input for the second stage. In the second stage, U-Net is used to segment the diseased leaves to obtain disease spots. Finally, the ratio of the pixel area of disease spots over the pixel area of leaves is calculated so as to classify the disease severity. The experiment results show that the proposed model is able to segment leaves and disease spots from complex backgrounds in a step-by-step manner so as to complete disease severity classification. The leaf segmentation accuracy reached 93.27%, the Dice coefficient of disease spot segmentation reached 0.6914, and the average disease severity classification accuracy reached 92.85%. Compared with other models, the model proposed in this study has higher robustness, segmentation precision and classification accuracy, providing important ideas and methods for classifying the severity of cucumber leaf diseases in complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助缓慢枕头采纳,获得10
刚刚
科研通AI2S应助大胆凡白采纳,获得10
1秒前
CRUSADER发布了新的文献求助10
1秒前
思源应助孤独千愁采纳,获得10
1秒前
1秒前
mm完成签到,获得积分20
2秒前
3秒前
遥不可及发布了新的文献求助10
4秒前
怡然的灯泡完成签到 ,获得积分10
4秒前
4秒前
pluto应助Sothnia采纳,获得20
4秒前
hl发布了新的文献求助10
5秒前
5秒前
6秒前
内向无敌发布了新的文献求助10
6秒前
梁馨月完成签到,获得积分10
7秒前
8秒前
9秒前
10秒前
芋泥桃桃完成签到,获得积分10
10秒前
jinjin发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
Lucas应助凉月采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助Hexagram采纳,获得10
13秒前
Hello应助mm采纳,获得10
13秒前
king发布了新的文献求助10
14秒前
FashionBoy应助沉默凡梦采纳,获得10
15秒前
15秒前
李十一应助彼岸采纳,获得10
15秒前
童然完成签到,获得积分10
15秒前
hl完成签到,获得积分10
16秒前
韶华若锦发布了新的文献求助10
18秒前
Hello应助king采纳,获得10
18秒前
18秒前
wh发布了新的文献求助10
19秒前
自信菠萝关注了科研通微信公众号
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184186
求助须知:如何正确求助?哪些是违规求助? 4370168
关于积分的说明 13608935
捐赠科研通 4222113
什么是DOI,文献DOI怎么找? 2315662
邀请新用户注册赠送积分活动 1314220
关于科研通互助平台的介绍 1263142