Accuracy of automated machine learning in classifying retinal pathologies from ultra-widefield pseudocolour fundus images

医学 人工智能 可解释性 定制 计算机科学 机器学习 接收机工作特性 模式识别(心理学) 政治学 法学
作者
Fares Antaki,Razek Georges Coussa,Ghofril Kahwati,Karim Hammamji,Mikaël Sébag,Renaud Duval
出处
期刊:British Journal of Ophthalmology [BMJ]
卷期号:107 (1): 90-95 被引量:39
标识
DOI:10.1136/bjophthalmol-2021-319030
摘要

Automated machine learning (AutoML) is a novel tool in artificial intelligence (AI). This study assessed the discriminative performance of AutoML in differentiating retinal vein occlusion (RVO), retinitis pigmentosa (RP) and retinal detachment (RD) from normal fundi using ultra-widefield (UWF) pseudocolour fundus images.Two ophthalmologists without coding experience carried out AutoML model design using a publicly available image data set (2137 labelled images). The data set was reviewed for low-quality and mislabeled images and then uploaded to the Google Cloud AutoML Vision platform for training and testing. We designed multiple binary models to differentiate RVO, RP and RD from normal fundi and compared them to bespoke models obtained from the literature. We then devised a multiclass model to detect RVO, RP and RD. Saliency maps were generated to assess the interpretability of the model.The AutoML models demonstrated high diagnostic properties in the binary classification tasks that were generally comparable to bespoke deep-learning models (area under the precision-recall curve (AUPRC) 0.921-1, sensitivity 84.91%-89.77%, specificity 78.72%-100%). The multiclass AutoML model had an AUPRC of 0.876, a sensitivity of 77.93% and a positive predictive value of 82.59%. The per-label sensitivity and specificity, respectively, were normal fundi (91.49%, 86.75%), RVO (83.02%, 92.50%), RP (72.00%, 100%) and RD (79.55%,96.80%).AutoML models created by ophthalmologists without coding experience can detect RVO, RP and RD in UWF images with very good diagnostic accuracy. The performance was comparable to bespoke deep-learning models derived by AI experts for RVO and RP but not for RD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小高发布了新的文献求助10
1秒前
普外科老白完成签到,获得积分10
2秒前
3秒前
4秒前
peili发布了新的文献求助10
4秒前
4秒前
5秒前
充电宝应助evan采纳,获得10
7秒前
研友_ZbM2qn发布了新的文献求助10
8秒前
pan liu完成签到,获得积分10
9秒前
打打应助坦率ling采纳,获得10
10秒前
LMY1411完成签到,获得积分10
10秒前
DanBao发布了新的文献求助10
11秒前
11秒前
xc完成签到,获得积分10
12秒前
暮寻屿苗完成签到 ,获得积分10
13秒前
lu发布了新的文献求助200
14秒前
haoliangshi发布了新的文献求助10
15秒前
乐乐应助荀语山采纳,获得10
16秒前
16秒前
17秒前
别皱眉发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
乔心发布了新的文献求助10
21秒前
wanci应助医路有你采纳,获得10
21秒前
22秒前
lvsehx发布了新的文献求助10
23秒前
Helen发布了新的文献求助10
24秒前
科研小青蛇完成签到,获得积分10
25秒前
跳跃的访琴完成签到 ,获得积分10
25秒前
研友_ZbM2qn发布了新的文献求助10
25秒前
老冯发布了新的文献求助10
26秒前
晨曦完成签到,获得积分10
27秒前
打打应助哈罗采纳,获得10
28秒前
28秒前
坦率ling发布了新的文献求助10
29秒前
彼方尚有荣光在完成签到 ,获得积分10
29秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349498
求助须知:如何正确求助?哪些是违规求助? 2975547
关于积分的说明 8669764
捐赠科研通 2656354
什么是DOI,文献DOI怎么找? 1454554
科研通“疑难数据库(出版商)”最低求助积分说明 673381
邀请新用户注册赠送积分活动 663821