PCA-MutPred: Prediction of Binding Free Energy Change Upon Missense Mutation in Protein-carbohydrate Complexes

突变 突变体 错义突变 生物化学 化学 碳水化合物 蛋白质结构 生物 基因
作者
N R Siva Shanmugam,K. Veluraja,M. Michael Gromiha
出处
期刊:Journal of Molecular Biology [Elsevier]
卷期号:434 (11): 167526-167526 被引量:3
标识
DOI:10.1016/j.jmb.2022.167526
摘要

Protein-carbohydrate interactions play an important role in several biological processes. The mutation of amino acid residues in carbohydrate-binding proteins may alter the binding affinity, affect the functions and lead to diseases. Elucidating the factors influencing the binding affinity change (ΔΔG) of protein-carbohydrate complexes upon mutation is a challenging task. In this work, we have collected the experimental data for the binding affinity change of 318 unique mutants and related with sequence and structural features of amino acid residues at the mutant sites. We found that accessible surface area, secondary structure, mutation preference, conservation score, hydrophobicity and contact energies are important to understand the binding affinity change upon mutation. We have developed multiple regression equations for predicting the binding affinity change upon mutation and our method showed an average correlation of 0.74 and a mean absolute error of 0.70 kcal/mol between experimental and predicted ΔΔG on a 10-fold cross-validation. Further, we have validated our method using an independent test data set of 124 (62 unique) mutations, which showed a correlation and MAE of 0.79 and 0.56 kcal/mol, respectively. We have developed a web server PCA-MutPred, Protein-CArbohydrate complex Mutation affinity Predictor, for predicting the change in binding affinity of protein-carbohydrate complexes and it is freely accessible at https://web.iitm.ac.in/bioinfo2/pcamutpred. We suggest that the method could be a useful resource for designing protein-carbohydrate complexes with desired affinities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正直听白完成签到,获得积分10
刚刚
stringz完成签到,获得积分10
刚刚
小二郎应助海贼王采纳,获得10
刚刚
刚刚
玛卡巴卡发布了新的文献求助20
刚刚
马马发布了新的文献求助10
1秒前
2秒前
缓慢含烟发布了新的文献求助10
2秒前
神志不清的衾完成签到,获得积分10
3秒前
3秒前
传奇3应助老迟到的小丸子采纳,获得10
3秒前
3秒前
5秒前
话梅气泡美式完成签到,获得积分10
5秒前
111应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
lx完成签到,获得积分10
7秒前
Uaena应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
evz应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
ChenWen完成签到,获得积分10
8秒前
寒月如雪发布了新的文献求助10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
8秒前
Hello应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
111应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得30
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957