Classifying the multi-omics data of gastric cancer using a deep feature selection method

组学 特征选择 随机森林 降维 计算机科学 维数之咒 数据挖掘 基因本体论 特征(语言学) 选择(遗传算法) 人工智能 机器学习 生物信息学 基因 生物 基因表达 生物化学 语言学 哲学
作者
Yanyu Hu,Long Zhao,Zhao Li,Xiangjun Dong,Tiantian Xu,Yuhai Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 116813-116813 被引量:28
标识
DOI:10.1016/j.eswa.2022.116813
摘要

Gastric cancer has the highest incidence among all types of malignant tumors. The rapid development of high-throughput gene technology has greatly promoted people’s understanding of gastric cancer at the molecular level. However, there is a lack of information in single omics data, so dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. omics data has the characteristics of being multivariate and high-dimensional, which affects the efficiency of classification. Therefore, dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. However, neural network learning algorithm is seldom used to improve classification accuracy when feature selection of multi-omics data is carried out, therefore, in this study, a random forest deep feature selection (RDFS) algorithm was proposed. By integrating gene expression (Exp) data and copy number variation (CNV) data, the dimensions of multi-omics data were reduced and improve the classification accuracy by using a random forest and deep neural network. The results showed that the accuracy and area under the curve (AUC) of multi-omics data were better than that of single-omics data under the RDFS algorithm. With other feature selection algorithms, RDFS also had a higher prediction accuracy and AUC. We also validated the effect of feature selection on RDFS. Finally, survival analysis was used to evaluate the important genes identified during feature selection and to obtain enrichment gene ontology (GO) terms and biological pathways for these genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xiumei1998完成签到,获得积分10
1秒前
李爱国应助怪味薯片采纳,获得10
1秒前
iiglu完成签到,获得积分10
1秒前
2秒前
laxnx发布了新的文献求助10
2秒前
科研通AI2S应助JasonSun采纳,获得10
2秒前
3秒前
hui发布了新的文献求助10
3秒前
MMP完成签到,获得积分10
3秒前
科研通AI2S应助小青柠采纳,获得10
4秒前
怜梦完成签到,获得积分10
4秒前
4秒前
机智的思远完成签到 ,获得积分10
4秒前
脑洞疼应助Dr.Sun采纳,获得10
4秒前
4秒前
safire发布了新的文献求助10
5秒前
就叫我小王吧完成签到,获得积分10
5秒前
上官小仙完成签到,获得积分10
5秒前
FashionBoy应助wait采纳,获得10
6秒前
星星完成签到,获得积分10
6秒前
6秒前
6秒前
林10完成签到,获得积分10
6秒前
研究完成签到,获得积分10
6秒前
7秒前
8秒前
Han发布了新的文献求助10
9秒前
wmszhd完成签到,获得积分10
9秒前
jason应助长情的一刀采纳,获得10
9秒前
9秒前
须野发布了新的文献求助10
10秒前
you一发布了新的文献求助10
10秒前
drjj完成签到 ,获得积分10
11秒前
深情安青应助甜甜的紫丝采纳,获得10
11秒前
real发布了新的文献求助10
11秒前
WWWWW完成签到,获得积分10
11秒前
无声瀑布完成签到,获得积分10
11秒前
自由月亮完成签到 ,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384