Classifying the multi-omics data of gastric cancer using a deep feature selection method

组学 特征选择 随机森林 降维 计算机科学 维数之咒 数据挖掘 基因本体论 特征(语言学) 选择(遗传算法) 人工智能 机器学习 生物信息学 基因 生物 基因表达 哲学 生物化学 语言学
作者
Yanyu Hu,Long Zhao,Zhao Li,Xiangjun Dong,Tiantian Xu,Yuhai Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:200: 116813-116813 被引量:28
标识
DOI:10.1016/j.eswa.2022.116813
摘要

Gastric cancer has the highest incidence among all types of malignant tumors. The rapid development of high-throughput gene technology has greatly promoted people’s understanding of gastric cancer at the molecular level. However, there is a lack of information in single omics data, so dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. omics data has the characteristics of being multivariate and high-dimensional, which affects the efficiency of classification. Therefore, dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. However, neural network learning algorithm is seldom used to improve classification accuracy when feature selection of multi-omics data is carried out, therefore, in this study, a random forest deep feature selection (RDFS) algorithm was proposed. By integrating gene expression (Exp) data and copy number variation (CNV) data, the dimensions of multi-omics data were reduced and improve the classification accuracy by using a random forest and deep neural network. The results showed that the accuracy and area under the curve (AUC) of multi-omics data were better than that of single-omics data under the RDFS algorithm. With other feature selection algorithms, RDFS also had a higher prediction accuracy and AUC. We also validated the effect of feature selection on RDFS. Finally, survival analysis was used to evaluate the important genes identified during feature selection and to obtain enrichment gene ontology (GO) terms and biological pathways for these genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
papi发布了新的文献求助10
刚刚
CodeCraft应助rlh采纳,获得10
1秒前
愤怒的源智给愤怒的源智的求助进行了留言
1秒前
咿咿完成签到,获得积分10
2秒前
Rebekah完成签到,获得积分10
2秒前
jin发布了新的文献求助10
2秒前
2秒前
Jasper应助白羽采纳,获得10
2秒前
2秒前
苗条的砖家完成签到,获得积分10
2秒前
思源应助薇薇快跑采纳,获得10
2秒前
2秒前
3秒前
biglixiang发布了新的文献求助10
3秒前
wuu发布了新的文献求助10
3秒前
迅速的念芹完成签到 ,获得积分10
3秒前
魏笑白发布了新的文献求助20
3秒前
岁月星辰完成签到,获得积分10
4秒前
4秒前
勤恳冰彤完成签到 ,获得积分10
5秒前
可爱的函函应助Rebekah采纳,获得10
6秒前
AstonMAO_完成签到,获得积分10
6秒前
stws发布了新的文献求助10
6秒前
7秒前
7秒前
云九卿完成签到,获得积分10
7秒前
科研通AI6应助王赟晖采纳,获得10
7秒前
大力半鬼完成签到,获得积分10
8秒前
临兵者完成签到 ,获得积分10
8秒前
yoyo发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
view发布了新的文献求助10
9秒前
灰灰发布了新的文献求助10
10秒前
LRR完成签到 ,获得积分10
10秒前
10秒前
11秒前
liu发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258146
求助须知:如何正确求助?哪些是违规求助? 4420085
关于积分的说明 13759156
捐赠科研通 4293598
什么是DOI,文献DOI怎么找? 2356080
邀请新用户注册赠送积分活动 1352449
关于科研通互助平台的介绍 1313237