亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classifying the multi-omics data of gastric cancer using a deep feature selection method

组学 特征选择 随机森林 降维 计算机科学 维数之咒 数据挖掘 基因本体论 特征(语言学) 选择(遗传算法) 人工智能 机器学习 生物信息学 基因 生物 基因表达 哲学 生物化学 语言学
作者
Yanyu Hu,Long Zhao,Zhao Li,Xiangjun Dong,Tiantian Xu,Yuhai Zhao
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:200: 116813-116813 被引量:28
标识
DOI:10.1016/j.eswa.2022.116813
摘要

Gastric cancer has the highest incidence among all types of malignant tumors. The rapid development of high-throughput gene technology has greatly promoted people’s understanding of gastric cancer at the molecular level. However, there is a lack of information in single omics data, so dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. omics data has the characteristics of being multivariate and high-dimensional, which affects the efficiency of classification. Therefore, dimensionality reduction is an effective method to overcome the dimensionality disaster of omics data. However, neural network learning algorithm is seldom used to improve classification accuracy when feature selection of multi-omics data is carried out, therefore, in this study, a random forest deep feature selection (RDFS) algorithm was proposed. By integrating gene expression (Exp) data and copy number variation (CNV) data, the dimensions of multi-omics data were reduced and improve the classification accuracy by using a random forest and deep neural network. The results showed that the accuracy and area under the curve (AUC) of multi-omics data were better than that of single-omics data under the RDFS algorithm. With other feature selection algorithms, RDFS also had a higher prediction accuracy and AUC. We also validated the effect of feature selection on RDFS. Finally, survival analysis was used to evaluate the important genes identified during feature selection and to obtain enrichment gene ontology (GO) terms and biological pathways for these genes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
Criminology34举报yuanjie求助涉嫌违规
11秒前
清秀的宝马完成签到 ,获得积分10
11秒前
比青云完成签到,获得积分10
14秒前
若宫伊芙完成签到,获得积分10
16秒前
英姑应助zmjmj采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
adkdad完成签到,获得积分10
24秒前
30秒前
31秒前
oooaini发布了新的文献求助10
35秒前
无花果应助bigalexwei采纳,获得10
35秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
37秒前
38秒前
dywen完成签到,获得积分10
39秒前
不许焦绿o发布了新的文献求助10
40秒前
42秒前
村长发布了新的文献求助10
42秒前
44秒前
48秒前
oooaini完成签到,获得积分10
48秒前
49秒前
whh123完成签到 ,获得积分10
50秒前
50秒前
50秒前
Moonlight完成签到 ,获得积分10
52秒前
52秒前
bigalexwei发布了新的文献求助10
53秒前
李健的小迷弟应助oooaini采纳,获得10
53秒前
DrW完成签到,获得积分10
1分钟前
大白菜芥末菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664034
求助须知:如何正确求助?哪些是违规求助? 4856893
关于积分的说明 15107044
捐赠科研通 4822496
什么是DOI,文献DOI怎么找? 2581475
邀请新用户注册赠送积分活动 1535694
关于科研通互助平台的介绍 1493921