材料科学
溶剂化
钝化
氢键
氢
催化作用
反应性(心理学)
电池(电)
阴极
氧气
化学工程
物理化学
纳米技术
有机化学
化学
离子
热力学
分子
功率(物理)
图层(电子)
替代医学
病理
工程类
物理
医学
作者
Qi Xiong,Chao‐Le Li,Ziwei Li,Yu‐Long Liang,Jianchen Li,Jun‐Min Yan,Gang Huang,Xinbo Zhang
标识
DOI:10.1002/adma.202110416
摘要
Surface discharge mechanism induced cathode passivation is a critical challenge that blocks the full liberation of the ultrahigh theoretical energy density in aprotic Li-O2 batteries. Herein, a facile and universal concept of hydrogen-bond-assisted solvation is proposed to trigger the solution discharge process for averting the shortcomings associated with surface discharge. 2,5-Di-tert-butylhydroquinone (DBHQ), an antioxidant with hydroxyl groups, is introduced as an exemplary soluble catalyst to promote solution discharge by hydrogen-bond-assisted solvation of O2- and Li2 O2 (OH···O). Thus, a Li-O2 battery with 50 × 10-3 m DBHQ delivers an extraordinary discharge capacity of 18 945 mAh g-1 (i.e., 9.47 mAh cm-2 ), even surpassing the capacity endowed by the state-of-the-art reduction mediator of 2,5-di-tert-butyl-1,4-benzoquinone. Besides, an ultrahigh Li2 O2 yield of 97.1% is also achieved due to the depressed reactivity of the reduced oxygen-containing species (O2- , LiO2 , and Li2 O2 ) by the solvating and antioxidative abilities of DBHQ. Consequently, the Li-O2 battery with DBHQ exhibits excellent cycling lifetime and rate capability. Furthermore, the generalizability of this approach of hydrogen-bond-assisted solution discharge is verified by other soluble catalysts that contain OH or NH groups, with implications that could bring Li-O2 batteries one step closer to being a viable technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI