Efficient Offloading for Minimizing Task Computation Delay of NOMA-Based Multiaccess Edge Computing

计算机科学 服务器 计算卸载 移动边缘计算 诺玛 GSM演进的增强数据速率 电信线路 边缘计算 任务(项目管理) 计算 计算机网络 算法 工程类 电信 系统工程
作者
Bincheng Zhu,Kaikai Chi,Jiajia Liu,Keping Yu,Shahid Mumtaz
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 3186-3203 被引量:121
标识
DOI:10.1109/tcomm.2022.3162263
摘要

Multi-access edge computing (MEC) has been one promising solution to reduce the computation delay of wireless devices. Due to the high spectrum efficiency of non-orthogonal multiple access (NOMA), this paper studies the single-user multi-edge-server MEC system based on downlink NOMA, aiming to minimize task computation delay by jointly optimizing the NOMA-based transmission duration (TD) and workload offloading allocation (WOA) among edge computing servers. This task computation delay minimization (CDM) problem is formulated as a nonconvex optimization problem. To solve the CDM problem efficiently, we decompose it into the sub-problem of determining the optimal WOA with a given TD and the top-problem of optimizing the TD. For the sub-problem, we first derive its some important properties and then design an efficient channel quality ranking based algorithm to obtain the optimal WOA. We solve the top-problem for the static-channel and dynamic-channel scenarios, respectively. For the static-channel scenario, we design an optimal algorithm which only apply once the golden section search method to obtain the optimal TD of first task and directly obtain the optimal offloading solution for any consequently arrived task with different workloads. For the dynamic-channel scenario where the channel qualities from the wireless device to the edge-computing servers are varying, it is critical to quickly determine the current task's offloading solution under the current channel state and task workload, which is very challenging for the traditional optimization methods. In order to conquer this challenge, we propose the deep reinforcement learning (DRL) based algorithm, which can obtain the near-optimal offloading solution instantly after enough learning. Finally, we validate through simulations the advantages of NOMA over frequency division multiple access (FDMA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
舒心的银耳汤完成签到,获得积分10
刚刚
刚刚
刚刚
elf发布了新的文献求助10
刚刚
泡面完成签到 ,获得积分10
刚刚
0994发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
一瓶罐发布了新的文献求助10
1秒前
Lucas应助沉默的夜梦采纳,获得10
2秒前
科研通AI6应助luckyseven采纳,获得10
2秒前
2秒前
2秒前
小糊糊完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
桐桐应助小离采纳,获得10
4秒前
5秒前
Sun完成签到,获得积分10
5秒前
好学发布了新的文献求助10
5秒前
cardiology发布了新的文献求助10
6秒前
dadada发布了新的文献求助10
6秒前
6秒前
B站萧亚轩发布了新的文献求助10
7秒前
三桥完成签到,获得积分10
7秒前
多不多乐完成签到,获得积分20
7秒前
ning发布了新的文献求助10
7秒前
8秒前
8秒前
李健的小迷弟应助钮小童采纳,获得10
8秒前
FashionBoy应助天真的乐菱采纳,获得10
9秒前
9秒前
落寞天玉发布了新的文献求助10
9秒前
九月发布了新的文献求助10
9秒前
可爱的函函应助高源伯采纳,获得10
10秒前
牛仔发布了新的文献求助10
10秒前
小陈发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625139
求助须知:如何正确求助?哪些是违规求助? 4710965
关于积分的说明 14953364
捐赠科研通 4779073
什么是DOI,文献DOI怎么找? 2553598
邀请新用户注册赠送积分活动 1515504
关于科研通互助平台的介绍 1475786