Efficient Offloading for Minimizing Task Computation Delay of NOMA-Based Multiaccess Edge Computing

计算机科学 服务器 计算卸载 移动边缘计算 诺玛 GSM演进的增强数据速率 电信线路 边缘计算 任务(项目管理) 计算 计算机网络 算法 工程类 电信 系统工程
作者
Bincheng Zhu,Kaikai Chi,Jiajia Liu,Keping Yu,Shahid Mumtaz
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 3186-3203 被引量:121
标识
DOI:10.1109/tcomm.2022.3162263
摘要

Multi-access edge computing (MEC) has been one promising solution to reduce the computation delay of wireless devices. Due to the high spectrum efficiency of non-orthogonal multiple access (NOMA), this paper studies the single-user multi-edge-server MEC system based on downlink NOMA, aiming to minimize task computation delay by jointly optimizing the NOMA-based transmission duration (TD) and workload offloading allocation (WOA) among edge computing servers. This task computation delay minimization (CDM) problem is formulated as a nonconvex optimization problem. To solve the CDM problem efficiently, we decompose it into the sub-problem of determining the optimal WOA with a given TD and the top-problem of optimizing the TD. For the sub-problem, we first derive its some important properties and then design an efficient channel quality ranking based algorithm to obtain the optimal WOA. We solve the top-problem for the static-channel and dynamic-channel scenarios, respectively. For the static-channel scenario, we design an optimal algorithm which only apply once the golden section search method to obtain the optimal TD of first task and directly obtain the optimal offloading solution for any consequently arrived task with different workloads. For the dynamic-channel scenario where the channel qualities from the wireless device to the edge-computing servers are varying, it is critical to quickly determine the current task's offloading solution under the current channel state and task workload, which is very challenging for the traditional optimization methods. In order to conquer this challenge, we propose the deep reinforcement learning (DRL) based algorithm, which can obtain the near-optimal offloading solution instantly after enough learning. Finally, we validate through simulations the advantages of NOMA over frequency division multiple access (FDMA).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liyk完成签到,获得积分10
刚刚
汉堡包应助黄文洁采纳,获得10
刚刚
欢呼妙菱完成签到,获得积分10
1秒前
2秒前
2秒前
NexusExplorer应助赵铁皮采纳,获得10
2秒前
XW完成签到,获得积分10
2秒前
dq1992发布了新的文献求助10
2秒前
111发布了新的文献求助10
2秒前
黄臻完成签到,获得积分10
3秒前
没有答案发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
浮游应助复杂的鑫磊采纳,获得10
5秒前
5秒前
陈某某发布了新的文献求助10
5秒前
yjwang应助杨多望采纳,获得10
5秒前
许威完成签到,获得积分10
5秒前
5秒前
星星又累发布了新的文献求助10
5秒前
黄臻发布了新的文献求助10
5秒前
十七发布了新的文献求助10
6秒前
7秒前
H2SO4发布了新的文献求助10
8秒前
8秒前
英俊的铭应助鳗鱼绿蝶采纳,获得10
8秒前
9秒前
Verritis发布了新的文献求助10
9秒前
xmqaq完成签到,获得积分10
10秒前
程程完成签到 ,获得积分10
10秒前
丘比特应助hah采纳,获得10
10秒前
11秒前
李汀完成签到,获得积分10
11秒前
深情安青应助毛子涵采纳,获得10
11秒前
11秒前
王子心发布了新的文献求助10
12秒前
希望天下0贩的0应助dq1992采纳,获得10
12秒前
囡囡不难发布了新的文献求助10
12秒前
肯德鸭完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718