已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

BiCuDNNLSTM-1dCNN — A hybrid deep learning-based predictive model for stock price prediction

计算机科学 人工智能 机器学习 股票价格 股市预测 计量经济学 股票市场 数学 系列(地层学) 生物 古生物学
作者
Anika Kanwal,Man Fai Lau,Sebastian Ng,Kwan Yong Sim,Siva Chandrasekaran
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:202: 117123-117123 被引量:45
标识
DOI:10.1016/j.eswa.2022.117123
摘要

Within last decade, the investing habits of people is rapidly increasing towards stock market. The nonlinearity and high volatility of stock prices have made it challenging to predict stock prices. Since stock price data contains incomplete, complex and fuzzy information, it is very difficult to capture any nonlinear characteristics of stock price data, which usually may be unknown to the investors. There is a dire need of an accurate stock price prediction model that could offer insights to the investors on stock prices, which ultimately could deliver positive investment returns. This research is focused on proposing a hybrid deep learning (DL) based predictive model, that combines a Bidirectional Cuda Deep Neural Network Long Short-Term Memory (BiCuDNNLSTM) and a one-dimensional Convolutional Neural Network (CNN), for timely and efficient prediction of stock prices. Our proposed model (BiCuDNNLSTM-1dCNN) is compared with other hybrid DL-based models and state of the art models for verification using five stock price datasets. The predicted results show that the proposed hybrid model is efficient for accurate prediction of stock price and reliable for supporting investors to make their informed investment decisions. • BiCuDNNLSTM-1dCNN is a hybrid DL model based on Bidirectional CuDNNLSTM and CNN. • BiCuDNNLSTM-1dCNN is efficient and scalable in developed and emerging stock market. • BiCuDNNLSTM-1dCNN uses univariate time series data to predict stock price. • Results confirm BiCuDNNLSTM-1dCNN is effective for volatility of stock price data. • BiCuDNNLSTM-1dCNN predicts better than LSTM, LSTM-CNN, CuDNNLSTM and LSTM-DNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嗯哼应助科研通管家采纳,获得20
1秒前
1秒前
嗯哼应助科研通管家采纳,获得20
1秒前
杳鸢应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
VDC应助科研通管家采纳,获得50
1秒前
VDC应助科研通管家采纳,获得50
1秒前
zhu关闭了zhu文献求助
2秒前
4秒前
温婉的惜文完成签到 ,获得积分10
5秒前
7秒前
SciGPT应助优秀寻云采纳,获得10
7秒前
9秒前
9秒前
小刷子完成签到 ,获得积分10
9秒前
11秒前
13秒前
幽默赛君完成签到 ,获得积分10
17秒前
TJY完成签到,获得积分10
18秒前
24秒前
25秒前
嗯哼举报杨阳洋求助涉嫌违规
28秒前
29秒前
本本完成签到 ,获得积分10
30秒前
31秒前
31秒前
哈哈带发布了新的文献求助10
32秒前
Arzu完成签到,获得积分20
34秒前
35秒前
丘比特应助小小的飞机采纳,获得10
37秒前
YOYO发布了新的文献求助10
39秒前
平常的若雁完成签到,获得积分10
39秒前
42秒前
今后应助尼古拉斯赵四采纳,获得10
42秒前
44秒前
xujiejiuxi发布了新的文献求助10
45秒前
范丞丞完成签到 ,获得积分10
45秒前
害羞龙猫完成签到 ,获得积分10
45秒前
小胡爱科研完成签到 ,获得积分10
47秒前
49秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880839
关于积分的说明 8217229
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377749
科研通“疑难数据库(出版商)”最低求助积分说明 647959
邀请新用户注册赠送积分活动 623314