Tobacco Leaf Grading Based on Deep Convolutional Neural Networks and Machine Vision

分级(工程) 卷积神经网络 烟叶 烟草烘烤 计算机科学 人工智能 深度学习 模式识别(心理学) 农业工程 园艺 工程类 生物 土木工程
作者
Mengyao Lu,Shuwen Jiang,Cong Wang,Chen Dong,Tianen Chen
出处
期刊:Journal of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:65 (1): 11-22 被引量:14
标识
DOI:10.13031/ja.14537
摘要

Highlights A classification model for the front and back sides of tobacco leaves was developed for application in industry. A tobacco leaf grading method that combines a CNN with double-branch integration was proposed. The A-ResNet network was proposed and compared with other classic CNN networks. The grading accuracy of eight different grades was 91.30% and the testing time was 82.180 ms, showing a relatively high classification accuracy and efficiency. Abstract . Flue-cured tobacco leaf grading is a key step in the production and processing of Chinese-style cigarette raw materials, directly affecting cigarette blend and quality stability. At present, manual grading of tobacco leaves is dominant in China, resulting in unsatisfactory grading quality and consuming considerable material and financial resources. In this study, for fast, accurate, and non-destructive tobacco leaf grading, 2,791 flue-cured tobacco leaves of eight different grades in south Anhui Province, China, were chosen as the study sample, and a tobacco leaf grading method that combines convolutional neural networks and double-branch integration was proposed. First, a classification model for the front and back sides of tobacco leaves was trained by transfer learning. Second, two processing methods (equal-scaled resizing and cropping) were used to obtain global images and local patches from the front sides of tobacco leaves. A global image-based tobacco leaf grading model was then developed using the proposed A-ResNet-65 network, and a local patch-based tobacco leaf grading model was developed using the ResNet-34 network. These two networks were compared with classic deep learning networks, such as VGGNet, GoogLeNet-V3, and ResNet. Finally, the grading results of the two grading models were integrated to realize tobacco leaf grading. The tobacco leaf classification accuracy of the final model, for eight different grades, was 91.30%, and grading of a single tobacco leaf required 82.180 ms. The proposed method achieved a relatively high grading accuracy and efficiency. It provides a method for industrial implementation of the tobacco leaf grading and offers a new approach for the quality grading of other agricultural products. Keywords: Convolutional neural network, Deep learning, Image classification, Transfer learning, Tobacco leaf grading
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自然千山完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
LT发布了新的文献求助10
3秒前
3秒前
xyz完成签到 ,获得积分10
4秒前
5秒前
浮黎原始天尊完成签到,获得积分10
5秒前
ninlingg完成签到 ,获得积分10
5秒前
吨吨发布了新的文献求助10
6秒前
青林发布了新的文献求助10
6秒前
Ll发布了新的文献求助10
6秒前
ZHIXIANGWENG发布了新的文献求助10
7秒前
8秒前
8秒前
阿馅儿发布了新的文献求助20
8秒前
HCX完成签到,获得积分10
9秒前
jinx123456完成签到,获得积分10
9秒前
9秒前
10秒前
钟迪完成签到,获得积分10
10秒前
清风~徐来发布了新的文献求助10
11秒前
11秒前
Evaporate发布了新的文献求助10
12秒前
ally完成签到,获得积分10
12秒前
明亮映阳完成签到,获得积分10
14秒前
vicky发布了新的文献求助10
14秒前
15秒前
ZHIXIANGWENG发布了新的文献求助10
17秒前
HEIKU应助vicky采纳,获得10
18秒前
atonnng发布了新的文献求助10
18秒前
czy发布了新的文献求助20
19秒前
丁丁完成签到,获得积分20
20秒前
A哇咔咔咔发布了新的文献求助10
20秒前
Akim应助陈昇采纳,获得10
21秒前
22秒前
22秒前
23发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461701
求助须知:如何正确求助?哪些是违规求助? 3055391
关于积分的说明 9047754
捐赠科研通 2745178
什么是DOI,文献DOI怎么找? 1506027
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695411