农药
班级(哲学)
产品(数学)
业务
生物技术
药物发现
风险分析(工程)
生化工程
计算机科学
生物
工程类
农业
生态学
人工智能
数学
生物信息学
几何学
作者
Thomas C. Sparks,Robert J Bryant
摘要
The continuing demand for agrochemical insecticides that can meet increasing grower, environmental, consumer and regulatory requirements creates the need for the development of new solutions for managing crop pest insects. The development of resistance to the currently available insecticidal products adds another critical driver for new insecticidal active ingredients (AIs). One avenue to meeting these challenges is the creation of new classes of insecticidal molecules to act as starting points and prototypes stimulating further spectrum, efficacy and environmental impact refinements. A new class of insecticides is foreshadowed by the first molecule exemplifying that class (first-in-class, FIC) and offers one measure of innovation within the agrochemical industry. Most insecticides owe their discovery to competitor-inspired (i.e. competitor patents/products) or next-generation (follow-on to a company's pre-existing product) strategies. In contrast, FIC insecticides primarily emerge from a bioactive hypothesis approach, with the largest segment resulting from the exploration of new areas of chemistry/heterocycles and underexploited motifs. Natural products also play an important role in the discovery of FIC insecticides. Understanding the origins of these FIC compounds and the approaches used in their discovery can provide insights into successful strategies for future FIC insecticides. This review analyses information on historic and recently introduced FIC insecticides. Its main objective has been to identify the most successful discovery strategies for identifying new agrochemical solutions to meet the challenge of minimizing crop losses resulting from insects. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI