Semi-supervised overlapping community detection in attributed graph with graph convolutional autoencoder

自编码 计算机科学 图形 最大化 人工智能 卷积神经网络 数据挖掘 机器学习 模式识别(心理学) 深度学习 理论计算机科学 数学 数学优化
作者
Chaobo He,Yulong Zheng,Junwei Cheng,Yong Tang,Guohua Chen,Hai Liu
出处
期刊:Information Sciences [Elsevier]
卷期号:608: 1464-1479 被引量:26
标识
DOI:10.1016/j.ins.2022.07.036
摘要

Community detection in attributed graph is of great application value and many related methods have been continually presented. However, existing methods for community detection in attributed graph still cannot well solve three key problems simultaneously: link information and attribute information fusion, prior information integration and overlapping community detection. Aiming at these problems, in this paper we devise a semi-supervised overlapping community detection method named SSGCAE which is based on graph neural networks. This method is composed of three modules: graph convolutional autoencoder (GCAE), semi-supervision and modularity maximization, which are respectively utilized to fuse link information and attribute information, integrate prior information and detect overlapping communities. We treat GCAE as the backbone framework and train it by using the unified loss from these three modules. Through this way, these three modules are jointly correlated via the community membership representation, which is very beneficial to improve the overall performance. SSGCAE is comprehensively evaluated on synthetic and real attributed graphs, and experiment results show that it is very effective and outperforms state-of-the-art baseline approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gyhk完成签到,获得积分10
1秒前
rock发布了新的文献求助10
1秒前
悦耳青曼发布了新的文献求助10
2秒前
Shelley完成签到,获得积分10
2秒前
Lucas应助Miraitowa采纳,获得10
2秒前
3秒前
3秒前
4秒前
无极微光应助木桶人plus采纳,获得50
4秒前
酵母君发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Pluto完成签到,获得积分10
5秒前
儒雅雁荷关注了科研通微信公众号
6秒前
谨慎枫叶完成签到,获得积分10
6秒前
我本人lrx发布了新的文献求助30
6秒前
儒飞完成签到,获得积分10
6秒前
7秒前
Ayna发布了新的文献求助10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
9秒前
HOAN应助科研通管家采纳,获得30
9秒前
机灵的雁蓉完成签到,获得积分10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
无名应助科研通管家采纳,获得20
9秒前
田様应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
嘿嘿应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
10秒前
斯文败类应助fairy采纳,获得10
10秒前
嘿嘿发布了新的文献求助10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
10秒前
001完成签到 ,获得积分10
10秒前
yznfly应助科研通管家采纳,获得150
10秒前
10秒前
10秒前
光亮不平完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694418
求助须知:如何正确求助?哪些是违规求助? 5097111
关于积分的说明 15213683
捐赠科研通 4851008
什么是DOI,文献DOI怎么找? 2602068
邀请新用户注册赠送积分活动 1553908
关于科研通互助平台的介绍 1511859