Fall Detection System Using Millimeter-Wave Radar Based on Neural Network and Information Fusion

计算机科学 雷达 人工智能 人工神经网络 计算机视觉 极高频率 传感器融合 模式识别(心理学) 电信
作者
Yicheng Yao,Changyu Liu,Hao Zhang,Baiju Yan,Pu Jian,Peng Wang,Lidong Du,Xianxiang Chen,Baoshi Han,Zhen Fang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (21): 21038-21050 被引量:35
标识
DOI:10.1109/jiot.2022.3175894
摘要

Falls are fatal for the elderly, and timely detection after falls is crucial. As a contactless device, the radar sensor can monitor users' falls with the advantage of not revealing their privacy. Today, the use of radar for fall detection has made a significant progress. However, most current methods cannot be used in real complex scenes. They usually collect fewer types of actions, and the ratio of the number of nonfall samples to the number of fall samples is small, which is not consistent with the real-life scene. In addition, the classifiers are usually trained and tested on the same environments and the same people, which cannot be easily extended to new environments and new people. We designed a robust fall detection system based on the frequency-modulated continuous-wave (FMCW) radar to solve these issues. The system detects the moment of human movement and calculates the range–velocity map, range–horizontal angle map, and range–vertical angle map of the radar signals, and creates three neural networks for these three signal maps. The stacking method of ensemble learning is used to fuse the time–space–velocity features extracted by the three neural networks to identify falls. The method was trained and tested on a data set consisting of ten scenes, 21 subjects, 52 nonfall action types, and 12 fall action types. The results show that on the test set containing only new environments and new subjects, the recall is 0.983 and the precision is 0.975.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橘为重关注了科研通微信公众号
刚刚
canjian1943完成签到,获得积分10
刚刚
Philo发布了新的文献求助10
刚刚
爱吃蛋挞完成签到,获得积分10
1秒前
GGG完成签到,获得积分10
1秒前
color发布了新的文献求助30
1秒前
干净发布了新的文献求助10
1秒前
geoman完成签到,获得积分10
2秒前
canjian1943发布了新的文献求助10
2秒前
孙博士发布了新的文献求助10
3秒前
huihui完成签到,获得积分10
3秒前
Devil_CG发布了新的文献求助20
3秒前
Aurora发布了新的文献求助10
4秒前
SYLH应助daisy采纳,获得30
5秒前
5秒前
Hello应助laoxiaozi采纳,获得10
5秒前
典雅的惜萱完成签到,获得积分10
6秒前
鹏1完成签到,获得积分10
7秒前
wasttt完成签到,获得积分10
9秒前
海绵宝宝完成签到 ,获得积分10
10秒前
12秒前
12秒前
12秒前
陈HIAHIA发布了新的文献求助10
12秒前
Devil_CG完成签到,获得积分10
12秒前
13秒前
color完成签到,获得积分10
13秒前
在水一方应助viper3采纳,获得10
14秒前
14秒前
14秒前
14秒前
16秒前
YY完成签到 ,获得积分10
16秒前
16秒前
evenpower完成签到,获得积分10
17秒前
高不二发布了新的文献求助10
17秒前
17秒前
Owen应助务实道罡采纳,获得10
17秒前
18秒前
调研昵称发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470747
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9085172
捐赠科研通 2754236
什么是DOI,文献DOI怎么找? 1511336
邀请新用户注册赠送积分活动 698372
科研通“疑难数据库(出版商)”最低求助积分说明 698253