Comparison of Kill Switch Toxins in Plant-Beneficial Pseudomonas fluorescens Reveals Drivers of Lethality, Stability, and Escape

生物 背景(考古学) 基因 荧光假单胞菌 合成生物学 遗传学 计算生物学 微生物学 细胞生物学 细菌 古生物学
作者
Tiffany M. Halvorsen,Dante P. Ricci,Dan Park,Yongqin Jiao,Mimi C. Yung
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (11): 3785-3796 被引量:11
标识
DOI:10.1021/acssynbio.2c00386
摘要

Kill switches provide a biocontainment strategy in which unwanted growth of an engineered microorganism is prevented by expression of a toxin gene. A major challenge in kill switch engineering is balancing evolutionary stability with robust cell killing activity in application relevant host strains. Understanding host-specific containment dynamics and modes of failure helps to develop potent yet stable kill switches. To guide the design of robust kill switches in the agriculturally relevant strain Pseudomonas fluorescens SBW25, we present a comparison of lethality, stability, and genetic escape of eight different toxic effectors in the presence of their cognate inactivators (i.e., toxin–antitoxin modules, polymorphic exotoxin–immunity systems, restriction endonuclease–methyltransferase pair). We find that cell killing capacity and evolutionary stability are inversely correlated and dependent on the level of protection provided by the inactivator gene. Decreasing the proteolytic stability of the inactivator protein can increase cell killing capacity, but at the cost of long-term circuit stability. By comparing toxins within the same genetic context, we determine that modes of genetic escape increase with circuit complexity and are driven by toxin activity, the protective capacity of the inactivator, and the presence of mutation-prone sequences within the circuit. Collectively, the results of our study reveal that circuit complexity, toxin choice, inactivator stability, and DNA sequence design are powerful drivers of kill switch stability and valuable targets for optimization of biocontainment systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你好谢谢你完成签到,获得积分20
刚刚
彭于晏应助笑点低怀亦采纳,获得10
刚刚
Ternura发布了新的文献求助10
1秒前
哈哈发布了新的文献求助10
1秒前
Ava应助难两全采纳,获得10
1秒前
Jasper应助123456采纳,获得10
2秒前
脑洞疼应助yhy采纳,获得10
2秒前
迅速星星完成签到 ,获得积分10
3秒前
完美世界应助百里随阴采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
多元醇发布了新的文献求助10
4秒前
Lucas应助红炉点血采纳,获得30
4秒前
勤恳的从波完成签到,获得积分20
4秒前
4秒前
呀呀完成签到,获得积分20
4秒前
刘cl发布了新的文献求助10
5秒前
5秒前
6秒前
TGU2331161488应助张弘采纳,获得20
6秒前
鲨头发布了新的文献求助10
6秒前
la2ygoo发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
8秒前
林一木发布了新的文献求助10
8秒前
8秒前
愉快尔烟发布了新的文献求助20
8秒前
方园完成签到,获得积分10
8秒前
沙漠水发布了新的文献求助10
9秒前
9秒前
爆米花应助辛勤的之玉采纳,获得10
10秒前
优雅盼海发布了新的文献求助10
10秒前
10秒前
10秒前
潘润朗发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732848
求助须知:如何正确求助?哪些是违规求助? 3276965
关于积分的说明 9999955
捐赠科研通 2992651
什么是DOI,文献DOI怎么找? 1642404
邀请新用户注册赠送积分活动 780360
科研通“疑难数据库(出版商)”最低求助积分说明 748744