Deep learning using molecular image of chemical structure

人工智能 深度学习 数量结构-活动关系 计算机科学 领域(数学) 机器学习 生物信息学 模棱两可 图像(数学) 模式识别(心理学) 化学 数学 生物化学 基因 程序设计语言 纯数学
作者
Yasunari Matsuzaka,Yoshihiro Uesawa
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 473-501
标识
DOI:10.1016/b978-0-443-18638-7.00005-0
摘要

Since the first appearance of artificial intelligence (AI) in the 1950s, it has gone through a fascinating history, changing its appearance until it has been recognized. The use of AI is receiving a lot of attention in the field of elucidation and evaluation of the physiological action mechanisms of toxic chemical compounds. This is because toxicity tests on experimental animals are generally used in the toxicity evaluation of chemical substances, and it is required to develop an in silico toxicity prediction method based on time reduction and consumption and the 3Rs perspectives. On the other hand, deep learning is a promising technique for achieving advanced prediction in quantitative structure-activity relationship (QSAR) toxicity prediction. However, QSAR did not fully exploit the capability of deep learning, which can directly analyze the molecular structure because molecular descriptors have traditionally been used to transfer chemical structure information to AI. Therefore, this study develops a novel structural information input method, “DeepSnap,” to learn the characteristics of the entire molecules as image data. In this study, the physiological activity value associated with each molecule was identified by inputting an image file generated from a three-dimensional (3D) molecular structure into a deep learning system developed in the field of image analysis, demonstrating that excellent predictive performance can be obtained. In this way, AI attempts to think beyond human judgment using deep learning. The advancement of this technology is projected to continue; however, the ambiguity of AI's judgment criteria has proven to be a “black box problem.” To dispel such concerns, the technique “explainable AI (XAI),” which explains the judgment basis of deep learning models, has grown in popularity recently. Although XAI has been studied in various directions in response to its high needs, the operating principle of the AI model itself has not yet been clarified. Therefore, comprehensive analysis of various chemical substances using large-scale reliable and explanatory toxicity information is expected to enable the development and enhancement of toxicity prediction methods using machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助Bioc采纳,获得10
1秒前
2秒前
桐桐应助史迪仔崽采纳,获得10
5秒前
歆兴欣完成签到 ,获得积分10
5秒前
CodeCraft应助幸福的小刺猬采纳,获得10
7秒前
8秒前
知鸢完成签到 ,获得积分0
10秒前
11秒前
12秒前
liuqiease发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
15秒前
16秒前
今后应助zdx12324采纳,获得10
17秒前
17秒前
思源应助明理采珊采纳,获得10
19秒前
跃迁的电子关注了科研通微信公众号
19秒前
机智的小天才完成签到,获得积分10
20秒前
史迪仔崽发布了新的文献求助10
20秒前
无语的又夏完成签到,获得积分10
21秒前
21秒前
英俊的铭应助勿欲论比采纳,获得10
21秒前
小杨发布了新的文献求助10
22秒前
shimenwanzhao完成签到 ,获得积分10
22秒前
有点冷发布了新的文献求助10
23秒前
25秒前
27秒前
27秒前
27秒前
丘比特应助稚于采纳,获得10
28秒前
迷人素完成签到 ,获得积分10
28秒前
29秒前
30秒前
Bethune发布了新的文献求助10
31秒前
32秒前
aaaa发布了新的文献求助10
33秒前
zdx12324发布了新的文献求助10
33秒前
稚于完成签到,获得积分10
33秒前
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297378
求助须知:如何正确求助?哪些是违规求助? 2932791
关于积分的说明 8459499
捐赠科研通 2605608
什么是DOI,文献DOI怎么找? 1422448
科研通“疑难数据库(出版商)”最低求助积分说明 661383
邀请新用户注册赠送积分活动 644728